Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions

Aim Higher temperatures increase the metabolic rate of ectothermic organisms up to a certain level and make them grow faster. This temperature‐sensitivity of growth is frequently used to predict the long‐term effects of climate warming on ectotherms. Yet, realized growth also depends on ecological f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2020-12, Vol.29 (12), p.2203-2213
Hauptverfasser: Denderen, Daniël, Gislason, Henrik, Heuvel, Joost, Andersen, Ken H., Leprieur, Fabien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2213
container_issue 12
container_start_page 2203
container_title Global ecology and biogeography
container_volume 29
creator Denderen, Daniël
Gislason, Henrik
Heuvel, Joost
Andersen, Ken H.
Leprieur, Fabien
description Aim Higher temperatures increase the metabolic rate of ectothermic organisms up to a certain level and make them grow faster. This temperature‐sensitivity of growth is frequently used to predict the long‐term effects of climate warming on ectotherms. Yet, realized growth also depends on ecological factors and evolutionary adaptation. Here we study whether faster growth is observed along temperature clines within and between marine fish species from polar to tropical regions. Location Global. Time period The sampling or publication year is for 718 observations before 1980, 1,073 observations between 1980 and 2000, and 390 observations after 2000 (for 336 observations no year was recorded). Major taxa studied Marine teleost fish and elasmobranchs. Methods The effects of temperature on fish growth are studied using 2,517 growth observations, representing 771 species in 165 marine ecoregions. The effects of temperature are presented with a Q10, describing relative increase in the rate of growth for each 10 °C increase. Results We find weak within‐ and between‐species effects of temperature on growth. The typical within‐species effect of temperature has a Q10 of 1.1. The between‐species effect is a little higher (Q10 = 1.4, or Q10 = 1.2 when corrected for phylogenetic relationships). When analysed per fish guild, growth responses vary from nearly independent of temperature in large demersals (Q10 = 1.1) to positive in small pelagics (Q10 = 1.6) and elasmobranchs (Q10 = 2.3). Average growth is higher in ecoregions with high primary production. Main conclusion The change in average growth along temperature clines is weaker than predicted by metabolic theory, suggesting that the metabolic predictions are not sustainable in an ecosystem context. The long‐term response of fish to the increase in temperature associated with climate change may hence be shaped more by local environmental and ecological dynamics than by the physiological temperature response of the species currently present.
doi_str_mv 10.1111/geb.13189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462825390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462825390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3329-8dcfacdc1bbe432315758bd0a8c001fa79e124a2bb903c7c0956fc67c4a275493</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKsH_4OAJw_b5mM_j1q0CgUvCt5Ckp3tbt02ayZl6X9vtOLNuczw-L2B9wi55mzG48zXYGZc8rI6IROe5nlSClme_t3i_ZxcIG4YY1ma5RMCy94Z3VO90_0BO6SuoU2HLV17N4aWeh0AKbZuRDqC_gBPPeDgdhjl4GiA7QAR2nugodU7uoWgjes7SwcPdWdDF9lLctboHuHqd0_J2-PD6-IpWb0snxd3q8RKKaqkrG2jbW25MZBKIXlWZKWpmS4tY7zRRQVcpFoYUzFpC8uqLG9sXtioFVlaySm5Of4dvPvcAwa1cXsfo6ESaS5KkcnonJLbI2W9Q_TQqMF3W-0PijP13aKKLaqfFiM7P7Jj18Phf1AtH-6Pji-ZZHVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462825390</pqid></control><display><type>article</type><title>Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Denderen, Daniël ; Gislason, Henrik ; Heuvel, Joost ; Andersen, Ken H. ; Leprieur, Fabien</creator><contributor>Leprieur, Fabien</contributor><creatorcontrib>Denderen, Daniël ; Gislason, Henrik ; Heuvel, Joost ; Andersen, Ken H. ; Leprieur, Fabien ; Leprieur, Fabien</creatorcontrib><description>Aim Higher temperatures increase the metabolic rate of ectothermic organisms up to a certain level and make them grow faster. This temperature‐sensitivity of growth is frequently used to predict the long‐term effects of climate warming on ectotherms. Yet, realized growth also depends on ecological factors and evolutionary adaptation. Here we study whether faster growth is observed along temperature clines within and between marine fish species from polar to tropical regions. Location Global. Time period The sampling or publication year is for 718 observations before 1980, 1,073 observations between 1980 and 2000, and 390 observations after 2000 (for 336 observations no year was recorded). Major taxa studied Marine teleost fish and elasmobranchs. Methods The effects of temperature on fish growth are studied using 2,517 growth observations, representing 771 species in 165 marine ecoregions. The effects of temperature are presented with a Q10, describing relative increase in the rate of growth for each 10 °C increase. Results We find weak within‐ and between‐species effects of temperature on growth. The typical within‐species effect of temperature has a Q10 of 1.1. The between‐species effect is a little higher (Q10 = 1.4, or Q10 = 1.2 when corrected for phylogenetic relationships). When analysed per fish guild, growth responses vary from nearly independent of temperature in large demersals (Q10 = 1.1) to positive in small pelagics (Q10 = 1.6) and elasmobranchs (Q10 = 2.3). Average growth is higher in ecoregions with high primary production. Main conclusion The change in average growth along temperature clines is weaker than predicted by metabolic theory, suggesting that the metabolic predictions are not sustainable in an ecosystem context. The long‐term response of fish to the increase in temperature associated with climate change may hence be shaped more by local environmental and ecological dynamics than by the physiological temperature response of the species currently present.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13189</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Climate change ; Climate effects ; Clines ; Ecological adaptation ; ectotherms ; Fish ; Global warming ; Growth rate ; High temperature ; Marine fish ; Metabolic rate ; metabolic theory ; Metabolism ; Phylogeny ; Predictions ; Primary production ; Species ; Temperature ; Temperature effects ; temperature response ; Tropical environment ; Tropical environments ; von Bertalanffy growth</subject><ispartof>Global ecology and biogeography, 2020-12, Vol.29 (12), p.2203-2213</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3329-8dcfacdc1bbe432315758bd0a8c001fa79e124a2bb903c7c0956fc67c4a275493</citedby><cites>FETCH-LOGICAL-c3329-8dcfacdc1bbe432315758bd0a8c001fa79e124a2bb903c7c0956fc67c4a275493</cites><orcidid>0000-0001-6351-0241 ; 0000-0003-0242-3333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><contributor>Leprieur, Fabien</contributor><creatorcontrib>Denderen, Daniël</creatorcontrib><creatorcontrib>Gislason, Henrik</creatorcontrib><creatorcontrib>Heuvel, Joost</creatorcontrib><creatorcontrib>Andersen, Ken H.</creatorcontrib><creatorcontrib>Leprieur, Fabien</creatorcontrib><title>Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions</title><title>Global ecology and biogeography</title><description>Aim Higher temperatures increase the metabolic rate of ectothermic organisms up to a certain level and make them grow faster. This temperature‐sensitivity of growth is frequently used to predict the long‐term effects of climate warming on ectotherms. Yet, realized growth also depends on ecological factors and evolutionary adaptation. Here we study whether faster growth is observed along temperature clines within and between marine fish species from polar to tropical regions. Location Global. Time period The sampling or publication year is for 718 observations before 1980, 1,073 observations between 1980 and 2000, and 390 observations after 2000 (for 336 observations no year was recorded). Major taxa studied Marine teleost fish and elasmobranchs. Methods The effects of temperature on fish growth are studied using 2,517 growth observations, representing 771 species in 165 marine ecoregions. The effects of temperature are presented with a Q10, describing relative increase in the rate of growth for each 10 °C increase. Results We find weak within‐ and between‐species effects of temperature on growth. The typical within‐species effect of temperature has a Q10 of 1.1. The between‐species effect is a little higher (Q10 = 1.4, or Q10 = 1.2 when corrected for phylogenetic relationships). When analysed per fish guild, growth responses vary from nearly independent of temperature in large demersals (Q10 = 1.1) to positive in small pelagics (Q10 = 1.6) and elasmobranchs (Q10 = 2.3). Average growth is higher in ecoregions with high primary production. Main conclusion The change in average growth along temperature clines is weaker than predicted by metabolic theory, suggesting that the metabolic predictions are not sustainable in an ecosystem context. The long‐term response of fish to the increase in temperature associated with climate change may hence be shaped more by local environmental and ecological dynamics than by the physiological temperature response of the species currently present.</description><subject>Climate change</subject><subject>Climate effects</subject><subject>Clines</subject><subject>Ecological adaptation</subject><subject>ectotherms</subject><subject>Fish</subject><subject>Global warming</subject><subject>Growth rate</subject><subject>High temperature</subject><subject>Marine fish</subject><subject>Metabolic rate</subject><subject>metabolic theory</subject><subject>Metabolism</subject><subject>Phylogeny</subject><subject>Predictions</subject><subject>Primary production</subject><subject>Species</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>temperature response</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>von Bertalanffy growth</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKsH_4OAJw_b5mM_j1q0CgUvCt5Ckp3tbt02ayZl6X9vtOLNuczw-L2B9wi55mzG48zXYGZc8rI6IROe5nlSClme_t3i_ZxcIG4YY1ma5RMCy94Z3VO90_0BO6SuoU2HLV17N4aWeh0AKbZuRDqC_gBPPeDgdhjl4GiA7QAR2nugodU7uoWgjes7SwcPdWdDF9lLctboHuHqd0_J2-PD6-IpWb0snxd3q8RKKaqkrG2jbW25MZBKIXlWZKWpmS4tY7zRRQVcpFoYUzFpC8uqLG9sXtioFVlaySm5Of4dvPvcAwa1cXsfo6ESaS5KkcnonJLbI2W9Q_TQqMF3W-0PijP13aKKLaqfFiM7P7Jj18Phf1AtH-6Pji-ZZHVf</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Denderen, Daniël</creator><creator>Gislason, Henrik</creator><creator>Heuvel, Joost</creator><creator>Andersen, Ken H.</creator><creator>Leprieur, Fabien</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0001-6351-0241</orcidid><orcidid>https://orcid.org/0000-0003-0242-3333</orcidid></search><sort><creationdate>202012</creationdate><title>Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions</title><author>Denderen, Daniël ; Gislason, Henrik ; Heuvel, Joost ; Andersen, Ken H. ; Leprieur, Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3329-8dcfacdc1bbe432315758bd0a8c001fa79e124a2bb903c7c0956fc67c4a275493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Climate change</topic><topic>Climate effects</topic><topic>Clines</topic><topic>Ecological adaptation</topic><topic>ectotherms</topic><topic>Fish</topic><topic>Global warming</topic><topic>Growth rate</topic><topic>High temperature</topic><topic>Marine fish</topic><topic>Metabolic rate</topic><topic>metabolic theory</topic><topic>Metabolism</topic><topic>Phylogeny</topic><topic>Predictions</topic><topic>Primary production</topic><topic>Species</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>temperature response</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>von Bertalanffy growth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denderen, Daniël</creatorcontrib><creatorcontrib>Gislason, Henrik</creatorcontrib><creatorcontrib>Heuvel, Joost</creatorcontrib><creatorcontrib>Andersen, Ken H.</creatorcontrib><creatorcontrib>Leprieur, Fabien</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denderen, Daniël</au><au>Gislason, Henrik</au><au>Heuvel, Joost</au><au>Andersen, Ken H.</au><au>Leprieur, Fabien</au><au>Leprieur, Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions</atitle><jtitle>Global ecology and biogeography</jtitle><date>2020-12</date><risdate>2020</risdate><volume>29</volume><issue>12</issue><spage>2203</spage><epage>2213</epage><pages>2203-2213</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>Aim Higher temperatures increase the metabolic rate of ectothermic organisms up to a certain level and make them grow faster. This temperature‐sensitivity of growth is frequently used to predict the long‐term effects of climate warming on ectotherms. Yet, realized growth also depends on ecological factors and evolutionary adaptation. Here we study whether faster growth is observed along temperature clines within and between marine fish species from polar to tropical regions. Location Global. Time period The sampling or publication year is for 718 observations before 1980, 1,073 observations between 1980 and 2000, and 390 observations after 2000 (for 336 observations no year was recorded). Major taxa studied Marine teleost fish and elasmobranchs. Methods The effects of temperature on fish growth are studied using 2,517 growth observations, representing 771 species in 165 marine ecoregions. The effects of temperature are presented with a Q10, describing relative increase in the rate of growth for each 10 °C increase. Results We find weak within‐ and between‐species effects of temperature on growth. The typical within‐species effect of temperature has a Q10 of 1.1. The between‐species effect is a little higher (Q10 = 1.4, or Q10 = 1.2 when corrected for phylogenetic relationships). When analysed per fish guild, growth responses vary from nearly independent of temperature in large demersals (Q10 = 1.1) to positive in small pelagics (Q10 = 1.6) and elasmobranchs (Q10 = 2.3). Average growth is higher in ecoregions with high primary production. Main conclusion The change in average growth along temperature clines is weaker than predicted by metabolic theory, suggesting that the metabolic predictions are not sustainable in an ecosystem context. The long‐term response of fish to the increase in temperature associated with climate change may hence be shaped more by local environmental and ecological dynamics than by the physiological temperature response of the species currently present.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13189</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6351-0241</orcidid><orcidid>https://orcid.org/0000-0003-0242-3333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2020-12, Vol.29 (12), p.2203-2213
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_journals_2462825390
source Wiley Online Library Journals Frontfile Complete
subjects Climate change
Climate effects
Clines
Ecological adaptation
ectotherms
Fish
Global warming
Growth rate
High temperature
Marine fish
Metabolic rate
metabolic theory
Metabolism
Phylogeny
Predictions
Primary production
Species
Temperature
Temperature effects
temperature response
Tropical environment
Tropical environments
von Bertalanffy growth
title Global analysis of fish growth rates shows weaker responses to temperature than metabolic predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20analysis%20of%20fish%20growth%20rates%20shows%20weaker%20responses%20to%20temperature%20than%20metabolic%20predictions&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=Denderen,%20Dani%C3%ABl&rft.date=2020-12&rft.volume=29&rft.issue=12&rft.spage=2203&rft.epage=2213&rft.pages=2203-2213&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13189&rft_dat=%3Cproquest_cross%3E2462825390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462825390&rft_id=info:pmid/&rfr_iscdi=true