Automatic Analysis Architecture of IoT Malware Samples
The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples...
Gespeichert in:
Veröffentlicht in: | Security and communication networks 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Security and communication networks |
container_volume | 2020 |
creator | Roldán Gómez, Jose Núñez-Gómez, Carlos Castelo Gomez, Juan Manuel Carrillo-Mondejar, Javier Martínez, José Luis |
description | The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture. |
doi_str_mv | 10.1155/2020/8810708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462823654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462823654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTYmf3eYyh-FCoerOdlm2xoStrU3YTSf29Kih49zQw8DDMvIbcIT4hCTChQmGiNoECfkREaZlJASs9_e-SX5CrGNYBErviIyKxrm41rqzzJtq4-xComWchXVevztgs-acpk1iySd1fvXT9-us2u9vGaXJSujv7mVMfk6-V5MX1L5x-vs2k2T3MmoU2VQSUBaEGpXyqQ3KAvvUIHWjiDGpnShTKFEoWRUuVcyKVgS-q59kY5ycbkfti7C81352Nr100X-kOjpVxSTZkUvFePg8pDE2Pwpd2FauPCwSLYYzL2mIw9JdPzh4Gvqm3h9tV_-m7Qvje-dH-a9l8oyX4AEcJprg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462823654</pqid></control><display><type>article</type><title>Automatic Analysis Architecture of IoT Malware Samples</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Roldán Gómez, Jose ; Núñez-Gómez, Carlos ; Castelo Gomez, Juan Manuel ; Carrillo-Mondejar, Javier ; Martínez, José Luis</creator><contributor>Zhang, Yin ; Yin Zhang</contributor><creatorcontrib>Roldán Gómez, Jose ; Núñez-Gómez, Carlos ; Castelo Gomez, Juan Manuel ; Carrillo-Mondejar, Javier ; Martínez, José Luis ; Zhang, Yin ; Yin Zhang</creatorcontrib><description>The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2020/8810708</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Cybersecurity ; Internet of Things ; Malware ; Smartphones ; Software</subject><ispartof>Security and communication networks, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Javier Carrillo-Mondejar et al.</rights><rights>Copyright © 2020 Javier Carrillo-Mondejar et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</citedby><cites>FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</cites><orcidid>0000-0001-8371-4305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Zhang, Yin</contributor><contributor>Yin Zhang</contributor><creatorcontrib>Roldán Gómez, Jose</creatorcontrib><creatorcontrib>Núñez-Gómez, Carlos</creatorcontrib><creatorcontrib>Castelo Gomez, Juan Manuel</creatorcontrib><creatorcontrib>Carrillo-Mondejar, Javier</creatorcontrib><creatorcontrib>Martínez, José Luis</creatorcontrib><title>Automatic Analysis Architecture of IoT Malware Samples</title><title>Security and communication networks</title><description>The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.</description><subject>Cybersecurity</subject><subject>Internet of Things</subject><subject>Malware</subject><subject>Smartphones</subject><subject>Software</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTYmf3eYyh-FCoerOdlm2xoStrU3YTSf29Kih49zQw8DDMvIbcIT4hCTChQmGiNoECfkREaZlJASs9_e-SX5CrGNYBErviIyKxrm41rqzzJtq4-xComWchXVevztgs-acpk1iySd1fvXT9-us2u9vGaXJSujv7mVMfk6-V5MX1L5x-vs2k2T3MmoU2VQSUBaEGpXyqQ3KAvvUIHWjiDGpnShTKFEoWRUuVcyKVgS-q59kY5ycbkfti7C81352Nr100X-kOjpVxSTZkUvFePg8pDE2Pwpd2FauPCwSLYYzL2mIw9JdPzh4Gvqm3h9tV_-m7Qvje-dH-a9l8oyX4AEcJprg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Roldán Gómez, Jose</creator><creator>Núñez-Gómez, Carlos</creator><creator>Castelo Gomez, Juan Manuel</creator><creator>Carrillo-Mondejar, Javier</creator><creator>Martínez, José Luis</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8371-4305</orcidid></search><sort><creationdate>2020</creationdate><title>Automatic Analysis Architecture of IoT Malware Samples</title><author>Roldán Gómez, Jose ; Núñez-Gómez, Carlos ; Castelo Gomez, Juan Manuel ; Carrillo-Mondejar, Javier ; Martínez, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cybersecurity</topic><topic>Internet of Things</topic><topic>Malware</topic><topic>Smartphones</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roldán Gómez, Jose</creatorcontrib><creatorcontrib>Núñez-Gómez, Carlos</creatorcontrib><creatorcontrib>Castelo Gomez, Juan Manuel</creatorcontrib><creatorcontrib>Carrillo-Mondejar, Javier</creatorcontrib><creatorcontrib>Martínez, José Luis</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roldán Gómez, Jose</au><au>Núñez-Gómez, Carlos</au><au>Castelo Gomez, Juan Manuel</au><au>Carrillo-Mondejar, Javier</au><au>Martínez, José Luis</au><au>Zhang, Yin</au><au>Yin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Analysis Architecture of IoT Malware Samples</atitle><jtitle>Security and communication networks</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8810708</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8371-4305</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-0114 |
ispartof | Security and communication networks, 2020, Vol.2020 (2020), p.1-12 |
issn | 1939-0114 1939-0122 |
language | eng |
recordid | cdi_proquest_journals_2462823654 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Cybersecurity Internet of Things Malware Smartphones Software |
title | Automatic Analysis Architecture of IoT Malware Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Analysis%20Architecture%20of%20IoT%20Malware%20Samples&rft.jtitle=Security%20and%20communication%20networks&rft.au=Rold%C3%A1n%20G%C3%B3mez,%20Jose&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2020/8810708&rft_dat=%3Cproquest_cross%3E2462823654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462823654&rft_id=info:pmid/&rfr_iscdi=true |