Automatic Analysis Architecture of IoT Malware Samples

The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Roldán Gómez, Jose, Núñez-Gómez, Carlos, Castelo Gomez, Juan Manuel, Carrillo-Mondejar, Javier, Martínez, José Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title Security and communication networks
container_volume 2020
creator Roldán Gómez, Jose
Núñez-Gómez, Carlos
Castelo Gomez, Juan Manuel
Carrillo-Mondejar, Javier
Martínez, José Luis
description The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.
doi_str_mv 10.1155/2020/8810708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462823654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462823654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTYmf3eYyh-FCoerOdlm2xoStrU3YTSf29Kih49zQw8DDMvIbcIT4hCTChQmGiNoECfkREaZlJASs9_e-SX5CrGNYBErviIyKxrm41rqzzJtq4-xComWchXVevztgs-acpk1iySd1fvXT9-us2u9vGaXJSujv7mVMfk6-V5MX1L5x-vs2k2T3MmoU2VQSUBaEGpXyqQ3KAvvUIHWjiDGpnShTKFEoWRUuVcyKVgS-q59kY5ycbkfti7C81352Nr100X-kOjpVxSTZkUvFePg8pDE2Pwpd2FauPCwSLYYzL2mIw9JdPzh4Gvqm3h9tV_-m7Qvje-dH-a9l8oyX4AEcJprg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462823654</pqid></control><display><type>article</type><title>Automatic Analysis Architecture of IoT Malware Samples</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Roldán Gómez, Jose ; Núñez-Gómez, Carlos ; Castelo Gomez, Juan Manuel ; Carrillo-Mondejar, Javier ; Martínez, José Luis</creator><contributor>Zhang, Yin ; Yin Zhang</contributor><creatorcontrib>Roldán Gómez, Jose ; Núñez-Gómez, Carlos ; Castelo Gomez, Juan Manuel ; Carrillo-Mondejar, Javier ; Martínez, José Luis ; Zhang, Yin ; Yin Zhang</creatorcontrib><description>The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2020/8810708</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Cybersecurity ; Internet of Things ; Malware ; Smartphones ; Software</subject><ispartof>Security and communication networks, 2020, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Javier Carrillo-Mondejar et al.</rights><rights>Copyright © 2020 Javier Carrillo-Mondejar et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</citedby><cites>FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</cites><orcidid>0000-0001-8371-4305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Zhang, Yin</contributor><contributor>Yin Zhang</contributor><creatorcontrib>Roldán Gómez, Jose</creatorcontrib><creatorcontrib>Núñez-Gómez, Carlos</creatorcontrib><creatorcontrib>Castelo Gomez, Juan Manuel</creatorcontrib><creatorcontrib>Carrillo-Mondejar, Javier</creatorcontrib><creatorcontrib>Martínez, José Luis</creatorcontrib><title>Automatic Analysis Architecture of IoT Malware Samples</title><title>Security and communication networks</title><description>The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.</description><subject>Cybersecurity</subject><subject>Internet of Things</subject><subject>Malware</subject><subject>Smartphones</subject><subject>Software</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0E1Lw0AQBuBFFKzVm2cJeNTYmf3eYyh-FCoerOdlm2xoStrU3YTSf29Kih49zQw8DDMvIbcIT4hCTChQmGiNoECfkREaZlJASs9_e-SX5CrGNYBErviIyKxrm41rqzzJtq4-xComWchXVevztgs-acpk1iySd1fvXT9-us2u9vGaXJSujv7mVMfk6-V5MX1L5x-vs2k2T3MmoU2VQSUBaEGpXyqQ3KAvvUIHWjiDGpnShTKFEoWRUuVcyKVgS-q59kY5ycbkfti7C81352Nr100X-kOjpVxSTZkUvFePg8pDE2Pwpd2FauPCwSLYYzL2mIw9JdPzh4Gvqm3h9tV_-m7Qvje-dH-a9l8oyX4AEcJprg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Roldán Gómez, Jose</creator><creator>Núñez-Gómez, Carlos</creator><creator>Castelo Gomez, Juan Manuel</creator><creator>Carrillo-Mondejar, Javier</creator><creator>Martínez, José Luis</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8371-4305</orcidid></search><sort><creationdate>2020</creationdate><title>Automatic Analysis Architecture of IoT Malware Samples</title><author>Roldán Gómez, Jose ; Núñez-Gómez, Carlos ; Castelo Gomez, Juan Manuel ; Carrillo-Mondejar, Javier ; Martínez, José Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-79176002d22eb706491efe71a085a9181378d79d75d9667c456b53b2e48e97a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cybersecurity</topic><topic>Internet of Things</topic><topic>Malware</topic><topic>Smartphones</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roldán Gómez, Jose</creatorcontrib><creatorcontrib>Núñez-Gómez, Carlos</creatorcontrib><creatorcontrib>Castelo Gomez, Juan Manuel</creatorcontrib><creatorcontrib>Carrillo-Mondejar, Javier</creatorcontrib><creatorcontrib>Martínez, José Luis</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roldán Gómez, Jose</au><au>Núñez-Gómez, Carlos</au><au>Castelo Gomez, Juan Manuel</au><au>Carrillo-Mondejar, Javier</au><au>Martínez, José Luis</au><au>Zhang, Yin</au><au>Yin Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Analysis Architecture of IoT Malware Samples</atitle><jtitle>Security and communication networks</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>The weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices and control them. The study of malware samples is a crucial task in order to gain information on how to protect these devices, but it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious software. In this article, a modular solution to automatically analyze IoT malware samples from these architectures is proposed. In addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective approach to rapidly examining malicious software compiled for any architecture.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8810708</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8371-4305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2020, Vol.2020 (2020), p.1-12
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2462823654
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Cybersecurity
Internet of Things
Malware
Smartphones
Software
title Automatic Analysis Architecture of IoT Malware Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T06%3A33%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Analysis%20Architecture%20of%20IoT%20Malware%20Samples&rft.jtitle=Security%20and%20communication%20networks&rft.au=Rold%C3%A1n%20G%C3%B3mez,%20Jose&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2020/8810708&rft_dat=%3Cproquest_cross%3E2462823654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462823654&rft_id=info:pmid/&rfr_iscdi=true