Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion

Ti–6Al–4V and Ti–6Al–7Nb were manufactured with laser powder bed fusion (LPBF). Microstructural comparison study between Ti–6Al–4V and Ti6Al–6Nb was used to understand processability similarities between two different titanium alloys. Quantitative similarities between two alloys revealed that Ti–6Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139978, Article 139978
Hauptverfasser: Xu, Chao, Sikan, Fatih, Atabay, Sila Ece, Muñiz-Lerma, Jose Alberto, Sanchez-Mata, Oscar, Wang, Xianglong, Brochu, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139978
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 793
creator Xu, Chao
Sikan, Fatih
Atabay, Sila Ece
Muñiz-Lerma, Jose Alberto
Sanchez-Mata, Oscar
Wang, Xianglong
Brochu, Mathieu
description Ti–6Al–4V and Ti–6Al–7Nb were manufactured with laser powder bed fusion (LPBF). Microstructural comparison study between Ti–6Al–4V and Ti6Al–6Nb was used to understand processability similarities between two different titanium alloys. Quantitative similarities between two alloys revealed that Ti–6Al–4V processing parameters can be used for optimization of Ti–6Al–7Nb. The microstructure, processing, properties relationship and the influence of heat treatments were investigated for Ti–6Al–7Nb. The as-built microstructure was composed of a columnar prior β grains with fine acicular α′ martensite resulting in a yield strength of 1082 MPa and an ultimate tensile strength of 1160 MPa with an elongation of 9.7%. Solutionizing at 1055 °C and aging at 540 °C completely transformed the columnar structure of the prior β grains to equiaxed via phase transformation and grain growth, solutionized the α’ martensite into β and then created a fine lamellar α + β structure with air cooling. The resultant microstructure had reduced strength and hardness but increased ductility. The reduction in yield (871 MPa) and ultimate tensile (940 MPa) strength would be positive to minimize stress shielding of orthopedic implants. The improved elongation of 11.5% meets the requirements for biomedical applications which stipulates an elongation of at least 10% according to the ISO 5832-3 Standard.
doi_str_mv 10.1016/j.msea.2020.139978
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462673735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320310492</els_id><sourcerecordid>2462673735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-a797b3506b79c7021cad7f64c4f98cc223972f42bbb8509a9df65c9c0aab5f0e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmFMcO4ljiaWq-JMKLGW2bMdWHaVxsZ0iNt6BN-RJcAgzy73S0Tn35wPgMkeLHOXVdbvYBS0WGOEkEMZofQRmeU1JVjBSHYMZYjjPSsTIKTgLoUUI5QUqZ-DwZJV3IfpBxcFrKPoG7rTait4q0UGpt-JgnYfOQBEyOdgu_nq2WsQs-lR1Azf2-_OrWnap0mcJ9941g0q6_ICdCNrDvXtvUpNJM0Owrj8HJ0Z0QV_89Tl4vbvdrB6y9cv942q5zhTBdcwEZVSSElWSMkURzpVoqKkKVRhWK4UxYRSbAksp6_ScYI2pSsUUEkKWBmkyB1fT3HTT26BD5K0bfJ9WclxUuKKEkjK58OQaUQSvDd97uxP-g-eIj3x5y0e-fOTLJ74pdDOFdLr_YLXnQVndp7-t1yryxtn_4j9FBIap</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462673735</pqid></control><display><type>article</type><title>Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion</title><source>Access via ScienceDirect (Elsevier)</source><creator>Xu, Chao ; Sikan, Fatih ; Atabay, Sila Ece ; Muñiz-Lerma, Jose Alberto ; Sanchez-Mata, Oscar ; Wang, Xianglong ; Brochu, Mathieu</creator><creatorcontrib>Xu, Chao ; Sikan, Fatih ; Atabay, Sila Ece ; Muñiz-Lerma, Jose Alberto ; Sanchez-Mata, Oscar ; Wang, Xianglong ; Brochu, Mathieu</creatorcontrib><description>Ti–6Al–4V and Ti–6Al–7Nb were manufactured with laser powder bed fusion (LPBF). Microstructural comparison study between Ti–6Al–4V and Ti6Al–6Nb was used to understand processability similarities between two different titanium alloys. Quantitative similarities between two alloys revealed that Ti–6Al–4V processing parameters can be used for optimization of Ti–6Al–7Nb. The microstructure, processing, properties relationship and the influence of heat treatments were investigated for Ti–6Al–7Nb. The as-built microstructure was composed of a columnar prior β grains with fine acicular α′ martensite resulting in a yield strength of 1082 MPa and an ultimate tensile strength of 1160 MPa with an elongation of 9.7%. Solutionizing at 1055 °C and aging at 540 °C completely transformed the columnar structure of the prior β grains to equiaxed via phase transformation and grain growth, solutionized the α’ martensite into β and then created a fine lamellar α + β structure with air cooling. The resultant microstructure had reduced strength and hardness but increased ductility. The reduction in yield (871 MPa) and ultimate tensile (940 MPa) strength would be positive to minimize stress shielding of orthopedic implants. The improved elongation of 11.5% meets the requirements for biomedical applications which stipulates an elongation of at least 10% according to the ISO 5832-3 Standard.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139978</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Additive manufacturing ; Air cooling ; Biomedical materials ; Columnar structure ; Elongation ; Grain growth ; Heat treating ; Heat treatment ; Lamellar structure ; Laser powder bed fusion ; Martensite ; Mechanical ; Mechanical properties ; Microstructure ; Optimization ; Orthopaedic implants ; Orthopedics ; Phase transitions ; Powder beds ; Process parameters ; Properties ; Similarity ; Stress shielding ; Surgical implants ; Titanium alloy ; Titanium alloys ; Titanium base alloys ; Ti–6Al–7Nb ; Ultimate tensile strength</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139978, Article 139978</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 19, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-a797b3506b79c7021cad7f64c4f98cc223972f42bbb8509a9df65c9c0aab5f0e3</citedby><cites>FETCH-LOGICAL-c328t-a797b3506b79c7021cad7f64c4f98cc223972f42bbb8509a9df65c9c0aab5f0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.139978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Sikan, Fatih</creatorcontrib><creatorcontrib>Atabay, Sila Ece</creatorcontrib><creatorcontrib>Muñiz-Lerma, Jose Alberto</creatorcontrib><creatorcontrib>Sanchez-Mata, Oscar</creatorcontrib><creatorcontrib>Wang, Xianglong</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><title>Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Ti–6Al–4V and Ti–6Al–7Nb were manufactured with laser powder bed fusion (LPBF). Microstructural comparison study between Ti–6Al–4V and Ti6Al–6Nb was used to understand processability similarities between two different titanium alloys. Quantitative similarities between two alloys revealed that Ti–6Al–4V processing parameters can be used for optimization of Ti–6Al–7Nb. The microstructure, processing, properties relationship and the influence of heat treatments were investigated for Ti–6Al–7Nb. The as-built microstructure was composed of a columnar prior β grains with fine acicular α′ martensite resulting in a yield strength of 1082 MPa and an ultimate tensile strength of 1160 MPa with an elongation of 9.7%. Solutionizing at 1055 °C and aging at 540 °C completely transformed the columnar structure of the prior β grains to equiaxed via phase transformation and grain growth, solutionized the α’ martensite into β and then created a fine lamellar α + β structure with air cooling. The resultant microstructure had reduced strength and hardness but increased ductility. The reduction in yield (871 MPa) and ultimate tensile (940 MPa) strength would be positive to minimize stress shielding of orthopedic implants. The improved elongation of 11.5% meets the requirements for biomedical applications which stipulates an elongation of at least 10% according to the ISO 5832-3 Standard.</description><subject>Additive manufacturing</subject><subject>Air cooling</subject><subject>Biomedical materials</subject><subject>Columnar structure</subject><subject>Elongation</subject><subject>Grain growth</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Lamellar structure</subject><subject>Laser powder bed fusion</subject><subject>Martensite</subject><subject>Mechanical</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Optimization</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Phase transitions</subject><subject>Powder beds</subject><subject>Process parameters</subject><subject>Properties</subject><subject>Similarity</subject><subject>Stress shielding</subject><subject>Surgical implants</subject><subject>Titanium alloy</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ti–6Al–7Nb</subject><subject>Ultimate tensile strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmFMcO4ljiaWq-JMKLGW2bMdWHaVxsZ0iNt6BN-RJcAgzy73S0Tn35wPgMkeLHOXVdbvYBS0WGOEkEMZofQRmeU1JVjBSHYMZYjjPSsTIKTgLoUUI5QUqZ-DwZJV3IfpBxcFrKPoG7rTait4q0UGpt-JgnYfOQBEyOdgu_nq2WsQs-lR1Azf2-_OrWnap0mcJ9941g0q6_ICdCNrDvXtvUpNJM0Owrj8HJ0Z0QV_89Tl4vbvdrB6y9cv942q5zhTBdcwEZVSSElWSMkURzpVoqKkKVRhWK4UxYRSbAksp6_ScYI2pSsUUEkKWBmkyB1fT3HTT26BD5K0bfJ9WclxUuKKEkjK58OQaUQSvDd97uxP-g-eIj3x5y0e-fOTLJ74pdDOFdLr_YLXnQVndp7-t1yryxtn_4j9FBIap</recordid><startdate>20200819</startdate><enddate>20200819</enddate><creator>Xu, Chao</creator><creator>Sikan, Fatih</creator><creator>Atabay, Sila Ece</creator><creator>Muñiz-Lerma, Jose Alberto</creator><creator>Sanchez-Mata, Oscar</creator><creator>Wang, Xianglong</creator><creator>Brochu, Mathieu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200819</creationdate><title>Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion</title><author>Xu, Chao ; Sikan, Fatih ; Atabay, Sila Ece ; Muñiz-Lerma, Jose Alberto ; Sanchez-Mata, Oscar ; Wang, Xianglong ; Brochu, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-a797b3506b79c7021cad7f64c4f98cc223972f42bbb8509a9df65c9c0aab5f0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Air cooling</topic><topic>Biomedical materials</topic><topic>Columnar structure</topic><topic>Elongation</topic><topic>Grain growth</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Lamellar structure</topic><topic>Laser powder bed fusion</topic><topic>Martensite</topic><topic>Mechanical</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Optimization</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Phase transitions</topic><topic>Powder beds</topic><topic>Process parameters</topic><topic>Properties</topic><topic>Similarity</topic><topic>Stress shielding</topic><topic>Surgical implants</topic><topic>Titanium alloy</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ti–6Al–7Nb</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Chao</creatorcontrib><creatorcontrib>Sikan, Fatih</creatorcontrib><creatorcontrib>Atabay, Sila Ece</creatorcontrib><creatorcontrib>Muñiz-Lerma, Jose Alberto</creatorcontrib><creatorcontrib>Sanchez-Mata, Oscar</creatorcontrib><creatorcontrib>Wang, Xianglong</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Chao</au><au>Sikan, Fatih</au><au>Atabay, Sila Ece</au><au>Muñiz-Lerma, Jose Alberto</au><au>Sanchez-Mata, Oscar</au><au>Wang, Xianglong</au><au>Brochu, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-08-19</date><risdate>2020</risdate><volume>793</volume><spage>139978</spage><pages>139978-</pages><artnum>139978</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Ti–6Al–4V and Ti–6Al–7Nb were manufactured with laser powder bed fusion (LPBF). Microstructural comparison study between Ti–6Al–4V and Ti6Al–6Nb was used to understand processability similarities between two different titanium alloys. Quantitative similarities between two alloys revealed that Ti–6Al–4V processing parameters can be used for optimization of Ti–6Al–7Nb. The microstructure, processing, properties relationship and the influence of heat treatments were investigated for Ti–6Al–7Nb. The as-built microstructure was composed of a columnar prior β grains with fine acicular α′ martensite resulting in a yield strength of 1082 MPa and an ultimate tensile strength of 1160 MPa with an elongation of 9.7%. Solutionizing at 1055 °C and aging at 540 °C completely transformed the columnar structure of the prior β grains to equiaxed via phase transformation and grain growth, solutionized the α’ martensite into β and then created a fine lamellar α + β structure with air cooling. The resultant microstructure had reduced strength and hardness but increased ductility. The reduction in yield (871 MPa) and ultimate tensile (940 MPa) strength would be positive to minimize stress shielding of orthopedic implants. The improved elongation of 11.5% meets the requirements for biomedical applications which stipulates an elongation of at least 10% according to the ISO 5832-3 Standard.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139978</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-08, Vol.793, p.139978, Article 139978
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2462673735
source Access via ScienceDirect (Elsevier)
subjects Additive manufacturing
Air cooling
Biomedical materials
Columnar structure
Elongation
Grain growth
Heat treating
Heat treatment
Lamellar structure
Laser powder bed fusion
Martensite
Mechanical
Mechanical properties
Microstructure
Optimization
Orthopaedic implants
Orthopedics
Phase transitions
Powder beds
Process parameters
Properties
Similarity
Stress shielding
Surgical implants
Titanium alloy
Titanium alloys
Titanium base alloys
Ti–6Al–7Nb
Ultimate tensile strength
title Microstructure and mechanical behavior of as-built and heat-treated Ti–6Al–7Nb produced by laser powder bed fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20mechanical%20behavior%20of%20as-built%20and%20heat-treated%20Ti%E2%80%936Al%E2%80%937Nb%20produced%20by%20laser%20powder%20bed%20fusion&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Xu,%20Chao&rft.date=2020-08-19&rft.volume=793&rft.spage=139978&rft.pages=139978-&rft.artnum=139978&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139978&rft_dat=%3Cproquest_cross%3E2462673735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462673735&rft_id=info:pmid/&rft_els_id=S0921509320310492&rfr_iscdi=true