Local eigenvalue decomposition for embedded Riemannian manifolds

Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimensio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2020-11, Vol.604, p.21-51
Hauptverfasser: Álvarez-Vizoso, Javier, Kirby, Michael, Peterson, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 21
container_title Linear algebra and its applications
container_volume 604
creator Álvarez-Vizoso, Javier
Kirby, Michael
Peterson, Chris
description Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.
doi_str_mv 10.1016/j.laa.2020.06.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462672840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520302974</els_id><sourcerecordid>2462672840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-3b2529fd5c025da6a4d555d437196b8c1a25ddd5d5345296e36a443fb4a840a73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz62Tz3bxoix-wYIgeg5pMpWUtlmT7oL_3izr2dMLw_PODA8h1xQqClTd9tVgTMWAQQWqAlAnZEGbmpe0keqULACYKHm9kufkIqUeAEQNbEHuN8GaoUD_hdPeDDssHNowbkPysw9T0YVY4Niic-iKd4-jmSZvpiKn78Lg0iU568yQ8Oovl-Tz6fFj_VJu3p5f1w-b0nIGc8lbJtmqc9ICk84oI5yU0gle05VqG0tNHjsnneQigwp5RgTvWmEaAabmS3Jz3LuN4XuHadZ92MUpn9RMKKZqlrlM0SNlY0gpYqe30Y8m_mgK-iBK9zqL0gdRGpTOonLn7tjB_P7eY9TJepwsOh_RztoF_0_7F7SNb58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462672840</pqid></control><display><type>article</type><title>Local eigenvalue decomposition for embedded Riemannian manifolds</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Álvarez-Vizoso, Javier ; Kirby, Michael ; Peterson, Chris</creator><creatorcontrib>Álvarez-Vizoso, Javier ; Kirby, Michael ; Peterson, Chris</creatorcontrib><description>Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.06.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Asymptotic series ; Covariance matrix ; Curvature ; Curvature tensor ; Decomposition ; Differential geometry ; Domains ; Eigenvalues ; Hyperspaces ; Linear algebra ; Local eigenvalue decomposition ; Machine learning ; Manifold learning ; Manifolds (mathematics) ; Principal component analysis ; Principal components analysis ; Riemann manifold ; Tensors</subject><ispartof>Linear algebra and its applications, 2020-11, Vol.604, p.21-51</ispartof><rights>2020 The Author(s)</rights><rights>Copyright American Elsevier Company, Inc. Nov 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-3b2529fd5c025da6a4d555d437196b8c1a25ddd5d5345296e36a443fb4a840a73</cites><orcidid>0000-0003-2879-2655 ; 0000-0002-3982-6876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.06.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Álvarez-Vizoso, Javier</creatorcontrib><creatorcontrib>Kirby, Michael</creatorcontrib><creatorcontrib>Peterson, Chris</creatorcontrib><title>Local eigenvalue decomposition for embedded Riemannian manifolds</title><title>Linear algebra and its applications</title><description>Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.</description><subject>Asymptotic series</subject><subject>Covariance matrix</subject><subject>Curvature</subject><subject>Curvature tensor</subject><subject>Decomposition</subject><subject>Differential geometry</subject><subject>Domains</subject><subject>Eigenvalues</subject><subject>Hyperspaces</subject><subject>Linear algebra</subject><subject>Local eigenvalue decomposition</subject><subject>Machine learning</subject><subject>Manifold learning</subject><subject>Manifolds (mathematics)</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Riemann manifold</subject><subject>Tensors</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz62Tz3bxoix-wYIgeg5pMpWUtlmT7oL_3izr2dMLw_PODA8h1xQqClTd9tVgTMWAQQWqAlAnZEGbmpe0keqULACYKHm9kufkIqUeAEQNbEHuN8GaoUD_hdPeDDssHNowbkPysw9T0YVY4Niic-iKd4-jmSZvpiKn78Lg0iU568yQ8Oovl-Tz6fFj_VJu3p5f1w-b0nIGc8lbJtmqc9ICk84oI5yU0gle05VqG0tNHjsnneQigwp5RgTvWmEaAabmS3Jz3LuN4XuHadZ92MUpn9RMKKZqlrlM0SNlY0gpYqe30Y8m_mgK-iBK9zqL0gdRGpTOonLn7tjB_P7eY9TJepwsOh_RztoF_0_7F7SNb58</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Álvarez-Vizoso, Javier</creator><creator>Kirby, Michael</creator><creator>Peterson, Chris</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2879-2655</orcidid><orcidid>https://orcid.org/0000-0002-3982-6876</orcidid></search><sort><creationdate>20201101</creationdate><title>Local eigenvalue decomposition for embedded Riemannian manifolds</title><author>Álvarez-Vizoso, Javier ; Kirby, Michael ; Peterson, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-3b2529fd5c025da6a4d555d437196b8c1a25ddd5d5345296e36a443fb4a840a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic series</topic><topic>Covariance matrix</topic><topic>Curvature</topic><topic>Curvature tensor</topic><topic>Decomposition</topic><topic>Differential geometry</topic><topic>Domains</topic><topic>Eigenvalues</topic><topic>Hyperspaces</topic><topic>Linear algebra</topic><topic>Local eigenvalue decomposition</topic><topic>Machine learning</topic><topic>Manifold learning</topic><topic>Manifolds (mathematics)</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Riemann manifold</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Álvarez-Vizoso, Javier</creatorcontrib><creatorcontrib>Kirby, Michael</creatorcontrib><creatorcontrib>Peterson, Chris</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Álvarez-Vizoso, Javier</au><au>Kirby, Michael</au><au>Peterson, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local eigenvalue decomposition for embedded Riemannian manifolds</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>604</volume><spage>21</spage><epage>51</epage><pages>21-51</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.06.006</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2879-2655</orcidid><orcidid>https://orcid.org/0000-0002-3982-6876</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2020-11, Vol.604, p.21-51
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2462672840
source Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals
subjects Asymptotic series
Covariance matrix
Curvature
Curvature tensor
Decomposition
Differential geometry
Domains
Eigenvalues
Hyperspaces
Linear algebra
Local eigenvalue decomposition
Machine learning
Manifold learning
Manifolds (mathematics)
Principal component analysis
Principal components analysis
Riemann manifold
Tensors
title Local eigenvalue decomposition for embedded Riemannian manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20eigenvalue%20decomposition%20for%20embedded%20Riemannian%20manifolds&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=%C3%81lvarez-Vizoso,%20Javier&rft.date=2020-11-01&rft.volume=604&rft.spage=21&rft.epage=51&rft.pages=21-51&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.06.006&rft_dat=%3Cproquest_cross%3E2462672840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462672840&rft_id=info:pmid/&rft_els_id=S0024379520302974&rfr_iscdi=true