Local eigenvalue decomposition for embedded Riemannian manifolds
Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimensio...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2020-11, Vol.604, p.21-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | |
container_start_page | 21 |
container_title | Linear algebra and its applications |
container_volume | 604 |
creator | Álvarez-Vizoso, Javier Kirby, Michael Peterson, Chris |
description | Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry. |
doi_str_mv | 10.1016/j.laa.2020.06.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462672840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520302974</els_id><sourcerecordid>2462672840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-3b2529fd5c025da6a4d555d437196b8c1a25ddd5d5345296e36a443fb4a840a73</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz62Tz3bxoix-wYIgeg5pMpWUtlmT7oL_3izr2dMLw_PODA8h1xQqClTd9tVgTMWAQQWqAlAnZEGbmpe0keqULACYKHm9kufkIqUeAEQNbEHuN8GaoUD_hdPeDDssHNowbkPysw9T0YVY4Niic-iKd4-jmSZvpiKn78Lg0iU568yQ8Oovl-Tz6fFj_VJu3p5f1w-b0nIGc8lbJtmqc9ICk84oI5yU0gle05VqG0tNHjsnneQigwp5RgTvWmEaAabmS3Jz3LuN4XuHadZ92MUpn9RMKKZqlrlM0SNlY0gpYqe30Y8m_mgK-iBK9zqL0gdRGpTOonLn7tjB_P7eY9TJepwsOh_RztoF_0_7F7SNb58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462672840</pqid></control><display><type>article</type><title>Local eigenvalue decomposition for embedded Riemannian manifolds</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Álvarez-Vizoso, Javier ; Kirby, Michael ; Peterson, Chris</creator><creatorcontrib>Álvarez-Vizoso, Javier ; Kirby, Michael ; Peterson, Chris</creatorcontrib><description>Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.06.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Asymptotic series ; Covariance matrix ; Curvature ; Curvature tensor ; Decomposition ; Differential geometry ; Domains ; Eigenvalues ; Hyperspaces ; Linear algebra ; Local eigenvalue decomposition ; Machine learning ; Manifold learning ; Manifolds (mathematics) ; Principal component analysis ; Principal components analysis ; Riemann manifold ; Tensors</subject><ispartof>Linear algebra and its applications, 2020-11, Vol.604, p.21-51</ispartof><rights>2020 The Author(s)</rights><rights>Copyright American Elsevier Company, Inc. Nov 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-3b2529fd5c025da6a4d555d437196b8c1a25ddd5d5345296e36a443fb4a840a73</cites><orcidid>0000-0003-2879-2655 ; 0000-0002-3982-6876</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.06.006$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Álvarez-Vizoso, Javier</creatorcontrib><creatorcontrib>Kirby, Michael</creatorcontrib><creatorcontrib>Peterson, Chris</creatorcontrib><title>Local eigenvalue decomposition for embedded Riemannian manifolds</title><title>Linear algebra and its applications</title><description>Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.</description><subject>Asymptotic series</subject><subject>Covariance matrix</subject><subject>Curvature</subject><subject>Curvature tensor</subject><subject>Decomposition</subject><subject>Differential geometry</subject><subject>Domains</subject><subject>Eigenvalues</subject><subject>Hyperspaces</subject><subject>Linear algebra</subject><subject>Local eigenvalue decomposition</subject><subject>Machine learning</subject><subject>Manifold learning</subject><subject>Manifolds (mathematics)</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Riemann manifold</subject><subject>Tensors</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz62Tz3bxoix-wYIgeg5pMpWUtlmT7oL_3izr2dMLw_PODA8h1xQqClTd9tVgTMWAQQWqAlAnZEGbmpe0keqULACYKHm9kufkIqUeAEQNbEHuN8GaoUD_hdPeDDssHNowbkPysw9T0YVY4Niic-iKd4-jmSZvpiKn78Lg0iU568yQ8Oovl-Tz6fFj_VJu3p5f1w-b0nIGc8lbJtmqc9ICk84oI5yU0gle05VqG0tNHjsnneQigwp5RgTvWmEaAabmS3Jz3LuN4XuHadZ92MUpn9RMKKZqlrlM0SNlY0gpYqe30Y8m_mgK-iBK9zqL0gdRGpTOonLn7tjB_P7eY9TJepwsOh_RztoF_0_7F7SNb58</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Álvarez-Vizoso, Javier</creator><creator>Kirby, Michael</creator><creator>Peterson, Chris</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2879-2655</orcidid><orcidid>https://orcid.org/0000-0002-3982-6876</orcidid></search><sort><creationdate>20201101</creationdate><title>Local eigenvalue decomposition for embedded Riemannian manifolds</title><author>Álvarez-Vizoso, Javier ; Kirby, Michael ; Peterson, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-3b2529fd5c025da6a4d555d437196b8c1a25ddd5d5345296e36a443fb4a840a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic series</topic><topic>Covariance matrix</topic><topic>Curvature</topic><topic>Curvature tensor</topic><topic>Decomposition</topic><topic>Differential geometry</topic><topic>Domains</topic><topic>Eigenvalues</topic><topic>Hyperspaces</topic><topic>Linear algebra</topic><topic>Local eigenvalue decomposition</topic><topic>Machine learning</topic><topic>Manifold learning</topic><topic>Manifolds (mathematics)</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Riemann manifold</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Álvarez-Vizoso, Javier</creatorcontrib><creatorcontrib>Kirby, Michael</creatorcontrib><creatorcontrib>Peterson, Chris</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Álvarez-Vizoso, Javier</au><au>Kirby, Michael</au><au>Peterson, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local eigenvalue decomposition for embedded Riemannian manifolds</atitle><jtitle>Linear algebra and its applications</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>604</volume><spage>21</spage><epage>51</epage><pages>21-51</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Local Principal Component Analysis can be performed over small domains of an embedded Riemannian manifold in order to relate the covariance analysis of the underlying point set with the local extrinsic and intrinsic curvature. We show that the volume of domains on a submanifold of general codimension, determined by the intersection with higher-dimensional cylinders and balls in the ambient space, have asymptotic expansions in terms of the mean and scalar curvatures. Moreover, we propose a generalization of the classical third fundamental form to general submanifolds and prove that the local eigenvalue decomposition (EVD) of the covariance matrices have asymptotic expansions that contain the curvature information encoded by the traces of this tensor. This proves the general correspondence between the local EVD integral invariants and differential-geometric curvature for arbitrary embedded Riemannian submanifolds, found so far for curves and hypersurfaces only. Thus, we establish a key theoretical bridge, via covariance matrices at scale, for potential applications in manifold learning relating the statistics of point clouds sampled from Riemannian submanifolds to the underlying geometry.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.06.006</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-2879-2655</orcidid><orcidid>https://orcid.org/0000-0002-3982-6876</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2020-11, Vol.604, p.21-51 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2462672840 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals |
subjects | Asymptotic series Covariance matrix Curvature Curvature tensor Decomposition Differential geometry Domains Eigenvalues Hyperspaces Linear algebra Local eigenvalue decomposition Machine learning Manifold learning Manifolds (mathematics) Principal component analysis Principal components analysis Riemann manifold Tensors |
title | Local eigenvalue decomposition for embedded Riemannian manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A26%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20eigenvalue%20decomposition%20for%20embedded%20Riemannian%20manifolds&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=%C3%81lvarez-Vizoso,%20Javier&rft.date=2020-11-01&rft.volume=604&rft.spage=21&rft.epage=51&rft.pages=21-51&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.06.006&rft_dat=%3Cproquest_cross%3E2462672840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462672840&rft_id=info:pmid/&rft_els_id=S0024379520302974&rfr_iscdi=true |