Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures
We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the averag...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2021-01, Vol.104 (1), p.114-127 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | Journal of the American Ceramic Society |
container_volume | 104 |
creator | Yang, Yongjian Tokunaga, Hirofumi Hayashi, Kazutaka Ono, Madoka Mauro, John C. |
description | We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures. |
doi_str_mv | 10.1111/jace.17430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462580801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462580801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4RdE4oaUYjuJ4xyrqrxUiQs9W36lTZXGwRuLx6_HaTizl9GOvlnLg9AtwQsS5-EgtV2QMs_wGZqRoiAprQg7RzOMMU1LTvElugI4xJVUPJ-h_bYz1sMgO9N0u2TYW3-UbWK_etlB47rE1UnvLUDwzY81CTRto2WyayVAEuCUcb1r3S7abURDN3ox5UeFwQc9hHjgGl3UsgV786dztH1cv6-e083b08tquUl1xkqcUmoqQjjN6jI3RlNm429koagynFNKi1ozVpOstERFVaXKmVFVLm00mTLZHN1Nd3vvPoKFQRxc8F18UtCc0YJjjkmk7idKewfgbS163xyl_xYEi7FJMTYpTk1GmEzwZ9Pa739I8bpcrafML2-KeBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462580801</pqid></control><display><type>article</type><title>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</title><source>Wiley-Blackwell Journals</source><creator>Yang, Yongjian ; Tokunaga, Hirofumi ; Hayashi, Kazutaka ; Ono, Madoka ; Mauro, John C.</creator><creatorcontrib>Yang, Yongjian ; Tokunaga, Hirofumi ; Hayashi, Kazutaka ; Ono, Madoka ; Mauro, John C.</creatorcontrib><description>We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17430</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Coordination numbers ; Elongation ; Heating ; Hot pressing ; Low temperature ; Molecular dynamics ; Pruning ; pruning mechanism ; Ring structures ; short and medium range order ; Silica glass ; Silicon dioxide ; Thermal expansion ; Thermal simulation ; Topology</subject><ispartof>Journal of the American Ceramic Society, 2021-01, Vol.104 (1), p.114-127</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</citedby><cites>FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</cites><orcidid>0000-0002-4319-3530 ; 0000-0002-1216-2731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Yongjian</creatorcontrib><creatorcontrib>Tokunaga, Hirofumi</creatorcontrib><creatorcontrib>Hayashi, Kazutaka</creatorcontrib><creatorcontrib>Ono, Madoka</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><title>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</title><title>Journal of the American Ceramic Society</title><description>We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.</description><subject>Coordination numbers</subject><subject>Elongation</subject><subject>Heating</subject><subject>Hot pressing</subject><subject>Low temperature</subject><subject>Molecular dynamics</subject><subject>Pruning</subject><subject>pruning mechanism</subject><subject>Ring structures</subject><subject>short and medium range order</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Thermal expansion</subject><subject>Thermal simulation</subject><subject>Topology</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4RdE4oaUYjuJ4xyrqrxUiQs9W36lTZXGwRuLx6_HaTizl9GOvlnLg9AtwQsS5-EgtV2QMs_wGZqRoiAprQg7RzOMMU1LTvElugI4xJVUPJ-h_bYz1sMgO9N0u2TYW3-UbWK_etlB47rE1UnvLUDwzY81CTRto2WyayVAEuCUcb1r3S7abURDN3ox5UeFwQc9hHjgGl3UsgV786dztH1cv6-e083b08tquUl1xkqcUmoqQjjN6jI3RlNm429koagynFNKi1ozVpOstERFVaXKmVFVLm00mTLZHN1Nd3vvPoKFQRxc8F18UtCc0YJjjkmk7idKewfgbS163xyl_xYEi7FJMTYpTk1GmEzwZ9Pa739I8bpcrafML2-KeBQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Yang, Yongjian</creator><creator>Tokunaga, Hirofumi</creator><creator>Hayashi, Kazutaka</creator><creator>Ono, Madoka</creator><creator>Mauro, John C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><orcidid>https://orcid.org/0000-0002-1216-2731</orcidid></search><sort><creationdate>202101</creationdate><title>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</title><author>Yang, Yongjian ; Tokunaga, Hirofumi ; Hayashi, Kazutaka ; Ono, Madoka ; Mauro, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coordination numbers</topic><topic>Elongation</topic><topic>Heating</topic><topic>Hot pressing</topic><topic>Low temperature</topic><topic>Molecular dynamics</topic><topic>Pruning</topic><topic>pruning mechanism</topic><topic>Ring structures</topic><topic>short and medium range order</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Thermal expansion</topic><topic>Thermal simulation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongjian</creatorcontrib><creatorcontrib>Tokunaga, Hirofumi</creatorcontrib><creatorcontrib>Hayashi, Kazutaka</creatorcontrib><creatorcontrib>Ono, Madoka</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongjian</au><au>Tokunaga, Hirofumi</au><au>Hayashi, Kazutaka</au><au>Ono, Madoka</au><au>Mauro, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17430</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><orcidid>https://orcid.org/0000-0002-1216-2731</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2021-01, Vol.104 (1), p.114-127 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_proquest_journals_2462580801 |
source | Wiley-Blackwell Journals |
subjects | Coordination numbers Elongation Heating Hot pressing Low temperature Molecular dynamics Pruning pruning mechanism Ring structures short and medium range order Silica glass Silicon dioxide Thermal expansion Thermal simulation Topology |
title | Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20thermal%20expansion%20of%20pressurized%20silica%20glass%20using%20topological%20pruning%20of%20ring%20structures&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Yang,%20Yongjian&rft.date=2021-01&rft.volume=104&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17430&rft_dat=%3Cproquest_cross%3E2462580801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462580801&rft_id=info:pmid/&rfr_iscdi=true |