Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures

We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the averag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2021-01, Vol.104 (1), p.114-127
Hauptverfasser: Yang, Yongjian, Tokunaga, Hirofumi, Hayashi, Kazutaka, Ono, Madoka, Mauro, John C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 114
container_title Journal of the American Ceramic Society
container_volume 104
creator Yang, Yongjian
Tokunaga, Hirofumi
Hayashi, Kazutaka
Ono, Madoka
Mauro, John C.
description We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.
doi_str_mv 10.1111/jace.17430
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462580801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462580801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqVw4RdE4oaUYjuJ4xyrqrxUiQs9W36lTZXGwRuLx6_HaTizl9GOvlnLg9AtwQsS5-EgtV2QMs_wGZqRoiAprQg7RzOMMU1LTvElugI4xJVUPJ-h_bYz1sMgO9N0u2TYW3-UbWK_etlB47rE1UnvLUDwzY81CTRto2WyayVAEuCUcb1r3S7abURDN3ox5UeFwQc9hHjgGl3UsgV786dztH1cv6-e083b08tquUl1xkqcUmoqQjjN6jI3RlNm429koagynFNKi1ozVpOstERFVaXKmVFVLm00mTLZHN1Nd3vvPoKFQRxc8F18UtCc0YJjjkmk7idKewfgbS163xyl_xYEi7FJMTYpTk1GmEzwZ9Pa739I8bpcrafML2-KeBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462580801</pqid></control><display><type>article</type><title>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</title><source>Wiley-Blackwell Journals</source><creator>Yang, Yongjian ; Tokunaga, Hirofumi ; Hayashi, Kazutaka ; Ono, Madoka ; Mauro, John C.</creator><creatorcontrib>Yang, Yongjian ; Tokunaga, Hirofumi ; Hayashi, Kazutaka ; Ono, Madoka ; Mauro, John C.</creatorcontrib><description>We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17430</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Coordination numbers ; Elongation ; Heating ; Hot pressing ; Low temperature ; Molecular dynamics ; Pruning ; pruning mechanism ; Ring structures ; short and medium range order ; Silica glass ; Silicon dioxide ; Thermal expansion ; Thermal simulation ; Topology</subject><ispartof>Journal of the American Ceramic Society, 2021-01, Vol.104 (1), p.114-127</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</citedby><cites>FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</cites><orcidid>0000-0002-4319-3530 ; 0000-0002-1216-2731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17430$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17430$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Yongjian</creatorcontrib><creatorcontrib>Tokunaga, Hirofumi</creatorcontrib><creatorcontrib>Hayashi, Kazutaka</creatorcontrib><creatorcontrib>Ono, Madoka</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><title>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</title><title>Journal of the American Ceramic Society</title><description>We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.</description><subject>Coordination numbers</subject><subject>Elongation</subject><subject>Heating</subject><subject>Hot pressing</subject><subject>Low temperature</subject><subject>Molecular dynamics</subject><subject>Pruning</subject><subject>pruning mechanism</subject><subject>Ring structures</subject><subject>short and medium range order</subject><subject>Silica glass</subject><subject>Silicon dioxide</subject><subject>Thermal expansion</subject><subject>Thermal simulation</subject><subject>Topology</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqVw4RdE4oaUYjuJ4xyrqrxUiQs9W36lTZXGwRuLx6_HaTizl9GOvlnLg9AtwQsS5-EgtV2QMs_wGZqRoiAprQg7RzOMMU1LTvElugI4xJVUPJ-h_bYz1sMgO9N0u2TYW3-UbWK_etlB47rE1UnvLUDwzY81CTRto2WyayVAEuCUcb1r3S7abURDN3ox5UeFwQc9hHjgGl3UsgV786dztH1cv6-e083b08tquUl1xkqcUmoqQjjN6jI3RlNm429koagynFNKi1ozVpOstERFVaXKmVFVLm00mTLZHN1Nd3vvPoKFQRxc8F18UtCc0YJjjkmk7idKewfgbS163xyl_xYEi7FJMTYpTk1GmEzwZ9Pa739I8bpcrafML2-KeBQ</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Yang, Yongjian</creator><creator>Tokunaga, Hirofumi</creator><creator>Hayashi, Kazutaka</creator><creator>Ono, Madoka</creator><creator>Mauro, John C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><orcidid>https://orcid.org/0000-0002-1216-2731</orcidid></search><sort><creationdate>202101</creationdate><title>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</title><author>Yang, Yongjian ; Tokunaga, Hirofumi ; Hayashi, Kazutaka ; Ono, Madoka ; Mauro, John C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3670-22d911823f74ddc26e174a5b2bd882225fc66f137e1b6f1b7b46db94aef136bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coordination numbers</topic><topic>Elongation</topic><topic>Heating</topic><topic>Hot pressing</topic><topic>Low temperature</topic><topic>Molecular dynamics</topic><topic>Pruning</topic><topic>pruning mechanism</topic><topic>Ring structures</topic><topic>short and medium range order</topic><topic>Silica glass</topic><topic>Silicon dioxide</topic><topic>Thermal expansion</topic><topic>Thermal simulation</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yongjian</creatorcontrib><creatorcontrib>Tokunaga, Hirofumi</creatorcontrib><creatorcontrib>Hayashi, Kazutaka</creatorcontrib><creatorcontrib>Ono, Madoka</creatorcontrib><creatorcontrib>Mauro, John C.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yongjian</au><au>Tokunaga, Hirofumi</au><au>Hayashi, Kazutaka</au><au>Ono, Madoka</au><au>Mauro, John C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2021-01</date><risdate>2021</risdate><volume>104</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>We investigate the structural origin of the large thermal expansion coefficient of hot‐compressed silica glass upon heating to a threshold temperature using molecular dynamics (MD) simulations. While the simulated thermal expansion at low temperature correlates well with the elongation of the average interatomic separation distance of the Si–O or Si–Si pair, the excess thermal expansion due to hot compression mainly results from change in medium range order, including a decrease in the population of large rings upon heating, without significant modification of the small ring population and without changing the short range ordering, such as the Si‐O coordination number. The reduction in the characteristic ring size can be connected to the high thermal expansion through the topological pruning mechanism. Such large thermal expansion is suppressed when the silica glasses are held at their respective quench pressures. The suppression of this excess thermal expansion is consistent with the pressure stabilization of the large ring structures.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17430</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4319-3530</orcidid><orcidid>https://orcid.org/0000-0002-1216-2731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2021-01, Vol.104 (1), p.114-127
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_2462580801
source Wiley-Blackwell Journals
subjects Coordination numbers
Elongation
Heating
Hot pressing
Low temperature
Molecular dynamics
Pruning
pruning mechanism
Ring structures
short and medium range order
Silica glass
Silicon dioxide
Thermal expansion
Thermal simulation
Topology
title Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20thermal%20expansion%20of%20pressurized%20silica%20glass%20using%20topological%20pruning%20of%20ring%20structures&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Yang,%20Yongjian&rft.date=2021-01&rft.volume=104&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17430&rft_dat=%3Cproquest_cross%3E2462580801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462580801&rft_id=info:pmid/&rfr_iscdi=true