3D Textural Analysis of Fatigue Fracture Surfaces
Three CT specimens from stainless steel AISI 304L were subjected to constant amplitude cyclic loadings with various asymmetries. Crack growth was recorded in detail. Fracture surfaces were documented by 3D maps in about 110 locations in the crack growth direction. 3D maps and their local gradients w...
Gespeichert in:
Veröffentlicht in: | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2020-11, Vol.405, p.259-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 263 |
---|---|
container_issue | |
container_start_page | 259 |
container_title | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum |
container_volume | 405 |
creator | Vronková, Tereza Lauschmann, Hynek Tesař, Karel |
description | Three CT specimens from stainless steel AISI 304L were subjected to constant amplitude cyclic loadings with various asymmetries. Crack growth was recorded in detail. Fracture surfaces were documented by 3D maps in about 110 locations in the crack growth direction. 3D maps and their local gradients were represented by 2D wavelet decompositions in 10 levels resulting in 60 textural features. Statistical models expressing crack growth rate as a function of textural features were optimized. Training and testing approach, a high ratio of overfitting, and testing of significance of components ensured model's robustness. Quality of results is documented by graphs confronting model outputs with real data known from experiment. Results are acceptable in all cases. |
doi_str_mv | 10.4028/www.scientific.net/DDF.405.259 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462487483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462487483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2109-7ee785f2df34757c1b0361d25ae761323ee453b8228ae285af9a93d422cfcbd03</originalsourceid><addsrcrecordid>eNqNkNFKwzAUhoMoOKfvUBC8a5ecJG16I45tVWHghfM6ZOmJdsx2Ji1zb29kwm69Ogf-n-8cPkLuGM0EBTXZ7_dZsA22feMam7XYT-bzKmYyA1mekRHLc0hLSYvzuFMGKeUqvyRXIWwo5UwxMSKMz5MVfveDN9tk2prtITQh6VxSmb55HzCpvLExxeR18M5YDNfkwpltwJu_OSZv1WI1e0qXL4_Ps-kytcBomRaIhZIOasdFIQvL1pTnrAZpsMgZB44oJF8rAGUQlDSuNCWvBYB1dl1TPia3R-7Od18Dhl5vusHHD4MGkYNQhVA8tu6PLeu7EDw6vfPNp_EHzaj-1aSjJn3SpKMmHTXFTOqoKQIejoDemzb0aD9Od_6J-AEJKHef</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462487483</pqid></control><display><type>article</type><title>3D Textural Analysis of Fatigue Fracture Surfaces</title><source>Scientific.net Journals</source><creator>Vronková, Tereza ; Lauschmann, Hynek ; Tesař, Karel</creator><creatorcontrib>Vronková, Tereza ; Lauschmann, Hynek ; Tesař, Karel</creatorcontrib><description>Three CT specimens from stainless steel AISI 304L were subjected to constant amplitude cyclic loadings with various asymmetries. Crack growth was recorded in detail. Fracture surfaces were documented by 3D maps in about 110 locations in the crack growth direction. 3D maps and their local gradients were represented by 2D wavelet decompositions in 10 levels resulting in 60 textural features. Statistical models expressing crack growth rate as a function of textural features were optimized. Training and testing approach, a high ratio of overfitting, and testing of significance of components ensured model's robustness. Quality of results is documented by graphs confronting model outputs with real data known from experiment. Results are acceptable in all cases.</description><identifier>ISSN: 1012-0386</identifier><identifier>ISSN: 1662-9507</identifier><identifier>EISSN: 1662-9507</identifier><identifier>DOI: 10.4028/www.scientific.net/DDF.405.259</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Crack propagation ; Fatigue failure ; Fracture surfaces ; Stainless steels ; Statistical models</subject><ispartof>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2020-11, Vol.405, p.259-263</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2109-7ee785f2df34757c1b0361d25ae761323ee453b8228ae285af9a93d422cfcbd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/5976?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vronková, Tereza</creatorcontrib><creatorcontrib>Lauschmann, Hynek</creatorcontrib><creatorcontrib>Tesař, Karel</creatorcontrib><title>3D Textural Analysis of Fatigue Fracture Surfaces</title><title>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</title><description>Three CT specimens from stainless steel AISI 304L were subjected to constant amplitude cyclic loadings with various asymmetries. Crack growth was recorded in detail. Fracture surfaces were documented by 3D maps in about 110 locations in the crack growth direction. 3D maps and their local gradients were represented by 2D wavelet decompositions in 10 levels resulting in 60 textural features. Statistical models expressing crack growth rate as a function of textural features were optimized. Training and testing approach, a high ratio of overfitting, and testing of significance of components ensured model's robustness. Quality of results is documented by graphs confronting model outputs with real data known from experiment. Results are acceptable in all cases.</description><subject>Crack propagation</subject><subject>Fatigue failure</subject><subject>Fracture surfaces</subject><subject>Stainless steels</subject><subject>Statistical models</subject><issn>1012-0386</issn><issn>1662-9507</issn><issn>1662-9507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkNFKwzAUhoMoOKfvUBC8a5ecJG16I45tVWHghfM6ZOmJdsx2Ji1zb29kwm69Ogf-n-8cPkLuGM0EBTXZ7_dZsA22feMam7XYT-bzKmYyA1mekRHLc0hLSYvzuFMGKeUqvyRXIWwo5UwxMSKMz5MVfveDN9tk2prtITQh6VxSmb55HzCpvLExxeR18M5YDNfkwpltwJu_OSZv1WI1e0qXL4_Ps-kytcBomRaIhZIOasdFIQvL1pTnrAZpsMgZB44oJF8rAGUQlDSuNCWvBYB1dl1TPia3R-7Od18Dhl5vusHHD4MGkYNQhVA8tu6PLeu7EDw6vfPNp_EHzaj-1aSjJn3SpKMmHTXFTOqoKQIejoDemzb0aD9Od_6J-AEJKHef</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Vronková, Tereza</creator><creator>Lauschmann, Hynek</creator><creator>Tesař, Karel</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20201101</creationdate><title>3D Textural Analysis of Fatigue Fracture Surfaces</title><author>Vronková, Tereza ; Lauschmann, Hynek ; Tesař, Karel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2109-7ee785f2df34757c1b0361d25ae761323ee453b8228ae285af9a93d422cfcbd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Crack propagation</topic><topic>Fatigue failure</topic><topic>Fracture surfaces</topic><topic>Stainless steels</topic><topic>Statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vronková, Tereza</creatorcontrib><creatorcontrib>Lauschmann, Hynek</creatorcontrib><creatorcontrib>Tesař, Karel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vronková, Tereza</au><au>Lauschmann, Hynek</au><au>Tesař, Karel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Textural Analysis of Fatigue Fracture Surfaces</atitle><jtitle>Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>405</volume><spage>259</spage><epage>263</epage><pages>259-263</pages><issn>1012-0386</issn><issn>1662-9507</issn><eissn>1662-9507</eissn><abstract>Three CT specimens from stainless steel AISI 304L were subjected to constant amplitude cyclic loadings with various asymmetries. Crack growth was recorded in detail. Fracture surfaces were documented by 3D maps in about 110 locations in the crack growth direction. 3D maps and their local gradients were represented by 2D wavelet decompositions in 10 levels resulting in 60 textural features. Statistical models expressing crack growth rate as a function of textural features were optimized. Training and testing approach, a high ratio of overfitting, and testing of significance of components ensured model's robustness. Quality of results is documented by graphs confronting model outputs with real data known from experiment. Results are acceptable in all cases.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/DDF.405.259</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-0386 |
ispartof | Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum, 2020-11, Vol.405, p.259-263 |
issn | 1012-0386 1662-9507 1662-9507 |
language | eng |
recordid | cdi_proquest_journals_2462487483 |
source | Scientific.net Journals |
subjects | Crack propagation Fatigue failure Fracture surfaces Stainless steels Statistical models |
title | 3D Textural Analysis of Fatigue Fracture Surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Textural%20Analysis%20of%20Fatigue%20Fracture%20Surfaces&rft.jtitle=Diffusion%20and%20defect%20data.%20Solid%20state%20data.%20Pt.%20A,%20Defect%20and%20diffusion%20forum&rft.au=Vronkov%C3%A1,%20Tereza&rft.date=2020-11-01&rft.volume=405&rft.spage=259&rft.epage=263&rft.pages=259-263&rft.issn=1012-0386&rft.eissn=1662-9507&rft_id=info:doi/10.4028/www.scientific.net/DDF.405.259&rft_dat=%3Cproquest_cross%3E2462487483%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462487483&rft_id=info:pmid/&rfr_iscdi=true |