Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models

In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Tu, Chaofan, Bai, Ruibin, Lu, Zheng, Aickelin, Uwe, Ge, Peiming, Zhao, Jianshuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tu, Chaofan
Bai, Ruibin
Lu, Zheng
Aickelin, Uwe
Ge, Peiming
Zhao, Jianshuang
description In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most Natural Language Processing (NLP) applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2462302492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462302492</sourcerecordid><originalsourceid>FETCH-proquest_journals_24623024923</originalsourceid><addsrcrecordid>eNqNjd1qwkAUhJeCYKi-w4FeB9KzMdpLEUsLFYo_eCkn7okkrLt2z6b4CH3sbosP4NUMMx8zDypDrZ_zWYk4VGORrigKrKY4mehM_XwwBde6E6z51FsKsLxeAou03gk0PsC7ixxSFKm2DCs27ZEsbPkaYWEpgU0KYsJhJ387BJ_e27wmYQOb9pxGY3Jz55jsP-AM7H0w-TcfYzpYecNWRmrQkBUe3_RRPb0ut4u3_BL8V88SD53vg0vVAcsKdYHlC-r7qF8XqVPD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462302492</pqid></control><display><type>article</type><title>Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models</title><source>Free E- Journals</source><creator>Tu, Chaofan ; Bai, Ruibin ; Lu, Zheng ; Aickelin, Uwe ; Ge, Peiming ; Zhao, Jianshuang</creator><creatorcontrib>Tu, Chaofan ; Bai, Ruibin ; Lu, Zheng ; Aickelin, Uwe ; Ge, Peiming ; Zhao, Jianshuang</creatorcontrib><description>In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most Natural Language Processing (NLP) applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Heuristic methods ; Machine learning ; Natural language processing ; Simulated annealing</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tu, Chaofan</creatorcontrib><creatorcontrib>Bai, Ruibin</creatorcontrib><creatorcontrib>Lu, Zheng</creatorcontrib><creatorcontrib>Aickelin, Uwe</creatorcontrib><creatorcontrib>Ge, Peiming</creatorcontrib><creatorcontrib>Zhao, Jianshuang</creatorcontrib><title>Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models</title><title>arXiv.org</title><description>In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most Natural Language Processing (NLP) applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Heuristic methods</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Simulated annealing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjd1qwkAUhJeCYKi-w4FeB9KzMdpLEUsLFYo_eCkn7okkrLt2z6b4CH3sbosP4NUMMx8zDypDrZ_zWYk4VGORrigKrKY4mehM_XwwBde6E6z51FsKsLxeAou03gk0PsC7ixxSFKm2DCs27ZEsbPkaYWEpgU0KYsJhJ387BJ_e27wmYQOb9pxGY3Jz55jsP-AM7H0w-TcfYzpYecNWRmrQkBUe3_RRPb0ut4u3_BL8V88SD53vg0vVAcsKdYHlC-r7qF8XqVPD</recordid><startdate>20201116</startdate><enddate>20201116</enddate><creator>Tu, Chaofan</creator><creator>Bai, Ruibin</creator><creator>Lu, Zheng</creator><creator>Aickelin, Uwe</creator><creator>Ge, Peiming</creator><creator>Zhao, Jianshuang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201116</creationdate><title>Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models</title><author>Tu, Chaofan ; Bai, Ruibin ; Lu, Zheng ; Aickelin, Uwe ; Ge, Peiming ; Zhao, Jianshuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24623024923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Heuristic methods</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Simulated annealing</topic><toplevel>online_resources</toplevel><creatorcontrib>Tu, Chaofan</creatorcontrib><creatorcontrib>Bai, Ruibin</creatorcontrib><creatorcontrib>Lu, Zheng</creatorcontrib><creatorcontrib>Aickelin, Uwe</creatorcontrib><creatorcontrib>Ge, Peiming</creatorcontrib><creatorcontrib>Zhao, Jianshuang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Chaofan</au><au>Bai, Ruibin</au><au>Lu, Zheng</au><au>Aickelin, Uwe</au><au>Ge, Peiming</au><au>Zhao, Jianshuang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models</atitle><jtitle>arXiv.org</jtitle><date>2020-11-16</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In this paper, we propose a rule-based engine composed of high quality and interpretable regular expressions for medical text classification. The regular expressions are auto generated by a constructive heuristic method and optimized using a Pool-based Simulated Annealing (PSA) approach. Although existing Deep Neural Network (DNN) methods present high quality performance in most Natural Language Processing (NLP) applications, the solutions are regarded as uninterpretable black boxes to humans. Therefore, rule-based methods are often introduced when interpretable solutions are needed, especially in the medical field. However, the construction of regular expressions can be extremely labor-intensive for large data sets. This research aims to reduce the manual efforts while maintaining high-quality solutions</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2462302492
source Free E- Journals
subjects Artificial neural networks
Classification
Heuristic methods
Machine learning
Natural language processing
Simulated annealing
title Learning Regular Expressions for Interpretable Medical Text Classification Using a Pool-based Simulated Annealing and Word-vector Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20Regular%20Expressions%20for%20Interpretable%20Medical%20Text%20Classification%20Using%20a%20Pool-based%20Simulated%20Annealing%20and%20Word-vector%20Models&rft.jtitle=arXiv.org&rft.au=Tu,%20Chaofan&rft.date=2020-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2462302492%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462302492&rft_id=info:pmid/&rfr_iscdi=true