Effects of tensile/compressive creeps on microstructure evolution of nickel-based single crystal superalloys

The microstructure evolution and failure mechanism of nickel-based single crystal DD9 under tensile and compressive creeps at 1100 °C and 140 MPa were studied. N-type rafting occurs in tensile creep and P-type rafting occurs in compressive creep. The γ′ phases gradually roughen into a layered plate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-01, Vol.851, p.156767, Article 156767
Hauptverfasser: Zhang, Zhongkui, Wen, Zhixun, Yue, Zhufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 156767
container_title Journal of alloys and compounds
container_volume 851
creator Zhang, Zhongkui
Wen, Zhixun
Yue, Zhufeng
description The microstructure evolution and failure mechanism of nickel-based single crystal DD9 under tensile and compressive creeps at 1100 °C and 140 MPa were studied. N-type rafting occurs in tensile creep and P-type rafting occurs in compressive creep. The γ′ phases gradually roughen into a layered plate structure during tensile creep and a rod structure during compressive creep. The rafting rate of tensile creep is higher than that of compressive creep. The crystal orientation deflection affects the Schmid factor, the activating of slip systems, and the morphology of Topological Close-Packed (TCP) phases. The moving direction and morphology of dislocations between tensile creep and compressive creep are approximately “opposite”. Moreover, the microstructure evolution displays tension-compression asymmetry. The crack initiates and propagates easily along the TCP phase and the γ/γ′ interface under the combination of misfit stress and dislocation pile-up stress. •The microstructure evolution is tension-compression asymmetry.•The crystal orientation deflection influences the microstructure evolution.•The microcrack is related to TCP phase, dislocation and the mechanical property of γ/γ′ phases.
doi_str_mv 10.1016/j.jallcom.2020.156767
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2462182567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820331315</els_id><sourcerecordid>2462182567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-af58b609cb3e4707313ae30761224fdd9225d67a5ed136671c92d3a7d37669fd3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKHgubv5aJP2JLKsH7DgRc8hm0wkNdvWJF3Yf2_Kevc0MDPvO_M-CN0TvCKY8HW36pT3ejisKKa5V3PBxQVakEawsuK8vUQL3NK6bFjTXKObGDuMMWkZWSC_tRZ0isVgiwR9dB7W2WkMEKM7QqEDwJinfXFwOgwxhUmnKUABx8FPyeVBVvZOf4Mv9yqCKaLrv_ysPMWkfBGnEUL-bzjFW3RllY9w91eX6PN5-7F5LXfvL2-bp12pGROpVLZu9hy3es-gElgwwhQwLDihtLLGtJTWhgtVgyGMc0F0Sw1TwjCRw1rDlujh7DuG4WeCmGQ3TKHPJyWtOCUNzYjyVn3emnPFAFaOwR1UOEmC5QxWdvIPrJzByjPYrHs86yBHODoIMmoHvQbjQkYpzeD-cfgFhaiGJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462182567</pqid></control><display><type>article</type><title>Effects of tensile/compressive creeps on microstructure evolution of nickel-based single crystal superalloys</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Zhongkui ; Wen, Zhixun ; Yue, Zhufeng</creator><creatorcontrib>Zhang, Zhongkui ; Wen, Zhixun ; Yue, Zhufeng</creatorcontrib><description>The microstructure evolution and failure mechanism of nickel-based single crystal DD9 under tensile and compressive creeps at 1100 °C and 140 MPa were studied. N-type rafting occurs in tensile creep and P-type rafting occurs in compressive creep. The γ′ phases gradually roughen into a layered plate structure during tensile creep and a rod structure during compressive creep. The rafting rate of tensile creep is higher than that of compressive creep. The crystal orientation deflection affects the Schmid factor, the activating of slip systems, and the morphology of Topological Close-Packed (TCP) phases. The moving direction and morphology of dislocations between tensile creep and compressive creep are approximately “opposite”. Moreover, the microstructure evolution displays tension-compression asymmetry. The crack initiates and propagates easily along the TCP phase and the γ/γ′ interface under the combination of misfit stress and dislocation pile-up stress. •The microstructure evolution is tension-compression asymmetry.•The crystal orientation deflection influences the microstructure evolution.•The microcrack is related to TCP phase, dislocation and the mechanical property of γ/γ′ phases.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156767</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Cold flow ; Crack ; Crystal structure ; Dislocation ; Dislocations ; Evolution ; Failure mechanisms ; Heat treating ; Microstructure ; Morphology ; Nickel base alloys ; Rafting ; Single crystals ; Superalloys ; TCP phase ; Tensile and compressive ; Tensile creep</subject><ispartof>Journal of alloys and compounds, 2021-01, Vol.851, p.156767, Article 156767</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-af58b609cb3e4707313ae30761224fdd9225d67a5ed136671c92d3a7d37669fd3</citedby><cites>FETCH-LOGICAL-c337t-af58b609cb3e4707313ae30761224fdd9225d67a5ed136671c92d3a7d37669fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838820331315$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Zhang, Zhongkui</creatorcontrib><creatorcontrib>Wen, Zhixun</creatorcontrib><creatorcontrib>Yue, Zhufeng</creatorcontrib><title>Effects of tensile/compressive creeps on microstructure evolution of nickel-based single crystal superalloys</title><title>Journal of alloys and compounds</title><description>The microstructure evolution and failure mechanism of nickel-based single crystal DD9 under tensile and compressive creeps at 1100 °C and 140 MPa were studied. N-type rafting occurs in tensile creep and P-type rafting occurs in compressive creep. The γ′ phases gradually roughen into a layered plate structure during tensile creep and a rod structure during compressive creep. The rafting rate of tensile creep is higher than that of compressive creep. The crystal orientation deflection affects the Schmid factor, the activating of slip systems, and the morphology of Topological Close-Packed (TCP) phases. The moving direction and morphology of dislocations between tensile creep and compressive creep are approximately “opposite”. Moreover, the microstructure evolution displays tension-compression asymmetry. The crack initiates and propagates easily along the TCP phase and the γ/γ′ interface under the combination of misfit stress and dislocation pile-up stress. •The microstructure evolution is tension-compression asymmetry.•The crystal orientation deflection influences the microstructure evolution.•The microcrack is related to TCP phase, dislocation and the mechanical property of γ/γ′ phases.</description><subject>Cold flow</subject><subject>Crack</subject><subject>Crystal structure</subject><subject>Dislocation</subject><subject>Dislocations</subject><subject>Evolution</subject><subject>Failure mechanisms</subject><subject>Heat treating</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nickel base alloys</subject><subject>Rafting</subject><subject>Single crystals</subject><subject>Superalloys</subject><subject>TCP phase</subject><subject>Tensile and compressive</subject><subject>Tensile creep</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKHgubv5aJP2JLKsH7DgRc8hm0wkNdvWJF3Yf2_Kevc0MDPvO_M-CN0TvCKY8HW36pT3ejisKKa5V3PBxQVakEawsuK8vUQL3NK6bFjTXKObGDuMMWkZWSC_tRZ0isVgiwR9dB7W2WkMEKM7QqEDwJinfXFwOgwxhUmnKUABx8FPyeVBVvZOf4Mv9yqCKaLrv_ysPMWkfBGnEUL-bzjFW3RllY9w91eX6PN5-7F5LXfvL2-bp12pGROpVLZu9hy3es-gElgwwhQwLDihtLLGtJTWhgtVgyGMc0F0Sw1TwjCRw1rDlujh7DuG4WeCmGQ3TKHPJyWtOCUNzYjyVn3emnPFAFaOwR1UOEmC5QxWdvIPrJzByjPYrHs86yBHODoIMmoHvQbjQkYpzeD-cfgFhaiGJw</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Zhang, Zhongkui</creator><creator>Wen, Zhixun</creator><creator>Yue, Zhufeng</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210115</creationdate><title>Effects of tensile/compressive creeps on microstructure evolution of nickel-based single crystal superalloys</title><author>Zhang, Zhongkui ; Wen, Zhixun ; Yue, Zhufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-af58b609cb3e4707313ae30761224fdd9225d67a5ed136671c92d3a7d37669fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cold flow</topic><topic>Crack</topic><topic>Crystal structure</topic><topic>Dislocation</topic><topic>Dislocations</topic><topic>Evolution</topic><topic>Failure mechanisms</topic><topic>Heat treating</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nickel base alloys</topic><topic>Rafting</topic><topic>Single crystals</topic><topic>Superalloys</topic><topic>TCP phase</topic><topic>Tensile and compressive</topic><topic>Tensile creep</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhongkui</creatorcontrib><creatorcontrib>Wen, Zhixun</creatorcontrib><creatorcontrib>Yue, Zhufeng</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhongkui</au><au>Wen, Zhixun</au><au>Yue, Zhufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of tensile/compressive creeps on microstructure evolution of nickel-based single crystal superalloys</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-01-15</date><risdate>2021</risdate><volume>851</volume><spage>156767</spage><pages>156767-</pages><artnum>156767</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The microstructure evolution and failure mechanism of nickel-based single crystal DD9 under tensile and compressive creeps at 1100 °C and 140 MPa were studied. N-type rafting occurs in tensile creep and P-type rafting occurs in compressive creep. The γ′ phases gradually roughen into a layered plate structure during tensile creep and a rod structure during compressive creep. The rafting rate of tensile creep is higher than that of compressive creep. The crystal orientation deflection affects the Schmid factor, the activating of slip systems, and the morphology of Topological Close-Packed (TCP) phases. The moving direction and morphology of dislocations between tensile creep and compressive creep are approximately “opposite”. Moreover, the microstructure evolution displays tension-compression asymmetry. The crack initiates and propagates easily along the TCP phase and the γ/γ′ interface under the combination of misfit stress and dislocation pile-up stress. •The microstructure evolution is tension-compression asymmetry.•The crystal orientation deflection influences the microstructure evolution.•The microcrack is related to TCP phase, dislocation and the mechanical property of γ/γ′ phases.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156767</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-01, Vol.851, p.156767, Article 156767
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2462182567
source Elsevier ScienceDirect Journals
subjects Cold flow
Crack
Crystal structure
Dislocation
Dislocations
Evolution
Failure mechanisms
Heat treating
Microstructure
Morphology
Nickel base alloys
Rafting
Single crystals
Superalloys
TCP phase
Tensile and compressive
Tensile creep
title Effects of tensile/compressive creeps on microstructure evolution of nickel-based single crystal superalloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T05%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20tensile/compressive%20creeps%20on%20microstructure%20evolution%20of%20nickel-based%20single%20crystal%20superalloys&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhang,%20Zhongkui&rft.date=2021-01-15&rft.volume=851&rft.spage=156767&rft.pages=156767-&rft.artnum=156767&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156767&rft_dat=%3Cproquest_cross%3E2462182567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462182567&rft_id=info:pmid/&rft_els_id=S0925838820331315&rfr_iscdi=true