A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment

Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2020-11, Vol.17 (22), p.8438, Article 8438
Hauptverfasser: Cohen, Rachel, Fernie, Geoff, Roshan Fekr, Atena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page 8438
container_title International journal of environmental research and public health
container_volume 17
creator Cohen, Rachel
Fernie, Geoff
Roshan Fekr, Atena
description Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.
doi_str_mv 10.3390/ijerph17228438
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2462173872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462173872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-893c5516247b834b9c6e608a934bdf32d0e1979da01a1f51b5f71035cc485b6d3</originalsourceid><addsrcrecordid>eNqNkc1PGzEQxa2qqHy01x4rSxzRUtuz649LpRABqYTEAdoeLa_tbZwm68XeEMFfj1EggltP86T5zZvRG4S-UnIKoMj3sPBpmFPBmKxBfkAHlHNS1ZzQj2_0PjrMeUEIyJqrT2gfgBHGAQ7QbIJ_hxxiX52Z7B2eDEOKxs5xFxO-Cc5vzPIfNr3Df4rYmAd8m8KAZ-bRJJfxJGef88r342e015ll9l9e6hH6dXF-O51VV9eXP6eTq8qCgLGSCmzTUM5q0UqoW2W550QaVbTrgDniqRLKGUIN7RraNp2gBBpra9m03MER-rH1HdbtyjtbViez1EMKK5MedDRBv-_0Ya7_xnstuOINF8Xg-MUgxbu1z6NexHXqy82a1ZxRAVKwQp1uKZtizsl3uw2U6Ofk9fvky8C3t3ft8NeoC3CyBTa-jV22wffW7zBCSKNqBiCKIrTQ8v_paRjNWH44jet-hCc4G6Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462173872</pqid></control><display><type>article</type><title>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Free Full-Text Journals in Chemistry</source><creator>Cohen, Rachel ; Fernie, Geoff ; Roshan Fekr, Atena</creator><creatorcontrib>Cohen, Rachel ; Fernie, Geoff ; Roshan Fekr, Atena</creatorcontrib><description>Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph17228438</identifier><identifier>PMID: 33202633</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accidental Falls ; Accuracy ; Algorithms ; Cameras ; Cities ; Cracks ; Edge detection ; Environmental effects ; Environmental factors ; Environmental Sciences ; Environmental Sciences &amp; Ecology ; Gaussian process ; Hazard identification ; Inspection ; Lasers ; Life Sciences &amp; Biomedicine ; Light ; Machine learning ; Measurement techniques ; Portable equipment ; Public, Environmental &amp; Occupational Health ; Regression analysis ; Risk Assessment ; Roads &amp; highways ; Science &amp; Technology ; Segmentation ; Stereoscopy ; Walkways</subject><ispartof>International journal of environmental research and public health, 2020-11, Vol.17 (22), p.8438, Article 8438</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000594233700001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c373t-893c5516247b834b9c6e608a934bdf32d0e1979da01a1f51b5f71035cc485b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,28254,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33202633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Rachel</creatorcontrib><creatorcontrib>Fernie, Geoff</creatorcontrib><creatorcontrib>Roshan Fekr, Atena</creatorcontrib><title>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</title><title>International journal of environmental research and public health</title><addtitle>INT J ENV RES PUB HE</addtitle><addtitle>Int J Environ Res Public Health</addtitle><description>Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.</description><subject>Accidental Falls</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Cities</subject><subject>Cracks</subject><subject>Edge detection</subject><subject>Environmental effects</subject><subject>Environmental factors</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences &amp; Ecology</subject><subject>Gaussian process</subject><subject>Hazard identification</subject><subject>Inspection</subject><subject>Lasers</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Light</subject><subject>Machine learning</subject><subject>Measurement techniques</subject><subject>Portable equipment</subject><subject>Public, Environmental &amp; Occupational Health</subject><subject>Regression analysis</subject><subject>Risk Assessment</subject><subject>Roads &amp; highways</subject><subject>Science &amp; Technology</subject><subject>Segmentation</subject><subject>Stereoscopy</subject><subject>Walkways</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc1PGzEQxa2qqHy01x4rSxzRUtuz649LpRABqYTEAdoeLa_tbZwm68XeEMFfj1EggltP86T5zZvRG4S-UnIKoMj3sPBpmFPBmKxBfkAHlHNS1ZzQj2_0PjrMeUEIyJqrT2gfgBHGAQ7QbIJ_hxxiX52Z7B2eDEOKxs5xFxO-Cc5vzPIfNr3Df4rYmAd8m8KAZ-bRJJfxJGef88r342e015ll9l9e6hH6dXF-O51VV9eXP6eTq8qCgLGSCmzTUM5q0UqoW2W550QaVbTrgDniqRLKGUIN7RraNp2gBBpra9m03MER-rH1HdbtyjtbViez1EMKK5MedDRBv-_0Ya7_xnstuOINF8Xg-MUgxbu1z6NexHXqy82a1ZxRAVKwQp1uKZtizsl3uw2U6Ofk9fvky8C3t3ft8NeoC3CyBTa-jV22wffW7zBCSKNqBiCKIrTQ8v_paRjNWH44jet-hCc4G6Aw</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Cohen, Rachel</creator><creator>Fernie, Geoff</creator><creator>Roshan Fekr, Atena</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20201114</creationdate><title>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</title><author>Cohen, Rachel ; Fernie, Geoff ; Roshan Fekr, Atena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-893c5516247b834b9c6e608a934bdf32d0e1979da01a1f51b5f71035cc485b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidental Falls</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Cities</topic><topic>Cracks</topic><topic>Edge detection</topic><topic>Environmental effects</topic><topic>Environmental factors</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences &amp; Ecology</topic><topic>Gaussian process</topic><topic>Hazard identification</topic><topic>Inspection</topic><topic>Lasers</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Light</topic><topic>Machine learning</topic><topic>Measurement techniques</topic><topic>Portable equipment</topic><topic>Public, Environmental &amp; Occupational Health</topic><topic>Regression analysis</topic><topic>Risk Assessment</topic><topic>Roads &amp; highways</topic><topic>Science &amp; Technology</topic><topic>Segmentation</topic><topic>Stereoscopy</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Rachel</creatorcontrib><creatorcontrib>Fernie, Geoff</creatorcontrib><creatorcontrib>Roshan Fekr, Atena</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Rachel</au><au>Fernie, Geoff</au><au>Roshan Fekr, Atena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</atitle><jtitle>International journal of environmental research and public health</jtitle><stitle>INT J ENV RES PUB HE</stitle><addtitle>Int J Environ Res Public Health</addtitle><date>2020-11-14</date><risdate>2020</risdate><volume>17</volume><issue>22</issue><spage>8438</spage><pages>8438-</pages><artnum>8438</artnum><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33202633</pmid><doi>10.3390/ijerph17228438</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1660-4601
ispartof International journal of environmental research and public health, 2020-11, Vol.17 (22), p.8438, Article 8438
issn 1660-4601
1661-7827
1660-4601
language eng
recordid cdi_proquest_journals_2462173872
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Free Full-Text Journals in Chemistry
subjects Accidental Falls
Accuracy
Algorithms
Cameras
Cities
Cracks
Edge detection
Environmental effects
Environmental factors
Environmental Sciences
Environmental Sciences & Ecology
Gaussian process
Hazard identification
Inspection
Lasers
Life Sciences & Biomedicine
Light
Machine learning
Measurement techniques
Portable equipment
Public, Environmental & Occupational Health
Regression analysis
Risk Assessment
Roads & highways
Science & Technology
Segmentation
Stereoscopy
Walkways
title A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Vision-Based%20Approach%20for%20Sidewalk%20and%20Walkway%20Trip%20Hazards%20Assessment&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Cohen,%20Rachel&rft.date=2020-11-14&rft.volume=17&rft.issue=22&rft.spage=8438&rft.pages=8438-&rft.artnum=8438&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph17228438&rft_dat=%3Cproquest_pubme%3E2462173872%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462173872&rft_id=info:pmid/33202633&rfr_iscdi=true