A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment
Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable...
Gespeichert in:
Veröffentlicht in: | International journal of environmental research and public health 2020-11, Vol.17 (22), p.8438, Article 8438 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 8438 |
container_title | International journal of environmental research and public health |
container_volume | 17 |
creator | Cohen, Rachel Fernie, Geoff Roshan Fekr, Atena |
description | Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method. |
doi_str_mv | 10.3390/ijerph17228438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2462173872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462173872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-893c5516247b834b9c6e608a934bdf32d0e1979da01a1f51b5f71035cc485b6d3</originalsourceid><addsrcrecordid>eNqNkc1PGzEQxa2qqHy01x4rSxzRUtuz649LpRABqYTEAdoeLa_tbZwm68XeEMFfj1EggltP86T5zZvRG4S-UnIKoMj3sPBpmFPBmKxBfkAHlHNS1ZzQj2_0PjrMeUEIyJqrT2gfgBHGAQ7QbIJ_hxxiX52Z7B2eDEOKxs5xFxO-Cc5vzPIfNr3Df4rYmAd8m8KAZ-bRJJfxJGef88r342e015ll9l9e6hH6dXF-O51VV9eXP6eTq8qCgLGSCmzTUM5q0UqoW2W550QaVbTrgDniqRLKGUIN7RraNp2gBBpra9m03MER-rH1HdbtyjtbViez1EMKK5MedDRBv-_0Ya7_xnstuOINF8Xg-MUgxbu1z6NexHXqy82a1ZxRAVKwQp1uKZtizsl3uw2U6Ofk9fvky8C3t3ft8NeoC3CyBTa-jV22wffW7zBCSKNqBiCKIrTQ8v_paRjNWH44jet-hCc4G6Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462173872</pqid></control><display><type>article</type><title>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Free Full-Text Journals in Chemistry</source><creator>Cohen, Rachel ; Fernie, Geoff ; Roshan Fekr, Atena</creator><creatorcontrib>Cohen, Rachel ; Fernie, Geoff ; Roshan Fekr, Atena</creatorcontrib><description>Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.</description><identifier>ISSN: 1660-4601</identifier><identifier>ISSN: 1661-7827</identifier><identifier>EISSN: 1660-4601</identifier><identifier>DOI: 10.3390/ijerph17228438</identifier><identifier>PMID: 33202633</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Accidental Falls ; Accuracy ; Algorithms ; Cameras ; Cities ; Cracks ; Edge detection ; Environmental effects ; Environmental factors ; Environmental Sciences ; Environmental Sciences & Ecology ; Gaussian process ; Hazard identification ; Inspection ; Lasers ; Life Sciences & Biomedicine ; Light ; Machine learning ; Measurement techniques ; Portable equipment ; Public, Environmental & Occupational Health ; Regression analysis ; Risk Assessment ; Roads & highways ; Science & Technology ; Segmentation ; Stereoscopy ; Walkways</subject><ispartof>International journal of environmental research and public health, 2020-11, Vol.17 (22), p.8438, Article 8438</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>0</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000594233700001</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-c373t-893c5516247b834b9c6e608a934bdf32d0e1979da01a1f51b5f71035cc485b6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696567/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696567/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,28253,28254,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33202633$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Rachel</creatorcontrib><creatorcontrib>Fernie, Geoff</creatorcontrib><creatorcontrib>Roshan Fekr, Atena</creatorcontrib><title>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</title><title>International journal of environmental research and public health</title><addtitle>INT J ENV RES PUB HE</addtitle><addtitle>Int J Environ Res Public Health</addtitle><description>Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.</description><subject>Accidental Falls</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Cities</subject><subject>Cracks</subject><subject>Edge detection</subject><subject>Environmental effects</subject><subject>Environmental factors</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Gaussian process</subject><subject>Hazard identification</subject><subject>Inspection</subject><subject>Lasers</subject><subject>Life Sciences & Biomedicine</subject><subject>Light</subject><subject>Machine learning</subject><subject>Measurement techniques</subject><subject>Portable equipment</subject><subject>Public, Environmental & Occupational Health</subject><subject>Regression analysis</subject><subject>Risk Assessment</subject><subject>Roads & highways</subject><subject>Science & Technology</subject><subject>Segmentation</subject><subject>Stereoscopy</subject><subject>Walkways</subject><issn>1660-4601</issn><issn>1661-7827</issn><issn>1660-4601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ARHDP</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkc1PGzEQxa2qqHy01x4rSxzRUtuz649LpRABqYTEAdoeLa_tbZwm68XeEMFfj1EggltP86T5zZvRG4S-UnIKoMj3sPBpmFPBmKxBfkAHlHNS1ZzQj2_0PjrMeUEIyJqrT2gfgBHGAQ7QbIJ_hxxiX52Z7B2eDEOKxs5xFxO-Cc5vzPIfNr3Df4rYmAd8m8KAZ-bRJJfxJGef88r342e015ll9l9e6hH6dXF-O51VV9eXP6eTq8qCgLGSCmzTUM5q0UqoW2W550QaVbTrgDniqRLKGUIN7RraNp2gBBpra9m03MER-rH1HdbtyjtbViez1EMKK5MedDRBv-_0Ya7_xnstuOINF8Xg-MUgxbu1z6NexHXqy82a1ZxRAVKwQp1uKZtizsl3uw2U6Ofk9fvky8C3t3ft8NeoC3CyBTa-jV22wffW7zBCSKNqBiCKIrTQ8v_paRjNWH44jet-hCc4G6Aw</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>Cohen, Rachel</creator><creator>Fernie, Geoff</creator><creator>Roshan Fekr, Atena</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>17B</scope><scope>AOWDO</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20201114</creationdate><title>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</title><author>Cohen, Rachel ; Fernie, Geoff ; Roshan Fekr, Atena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-893c5516247b834b9c6e608a934bdf32d0e1979da01a1f51b5f71035cc485b6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accidental Falls</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Cities</topic><topic>Cracks</topic><topic>Edge detection</topic><topic>Environmental effects</topic><topic>Environmental factors</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Gaussian process</topic><topic>Hazard identification</topic><topic>Inspection</topic><topic>Lasers</topic><topic>Life Sciences & Biomedicine</topic><topic>Light</topic><topic>Machine learning</topic><topic>Measurement techniques</topic><topic>Portable equipment</topic><topic>Public, Environmental & Occupational Health</topic><topic>Regression analysis</topic><topic>Risk Assessment</topic><topic>Roads & highways</topic><topic>Science & Technology</topic><topic>Segmentation</topic><topic>Stereoscopy</topic><topic>Walkways</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Rachel</creatorcontrib><creatorcontrib>Fernie, Geoff</creatorcontrib><creatorcontrib>Roshan Fekr, Atena</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of environmental research and public health</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Rachel</au><au>Fernie, Geoff</au><au>Roshan Fekr, Atena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment</atitle><jtitle>International journal of environmental research and public health</jtitle><stitle>INT J ENV RES PUB HE</stitle><addtitle>Int J Environ Res Public Health</addtitle><date>2020-11-14</date><risdate>2020</risdate><volume>17</volume><issue>22</issue><spage>8438</spage><pages>8438-</pages><artnum>8438</artnum><issn>1660-4601</issn><issn>1661-7827</issn><eissn>1660-4601</eissn><abstract>Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device's error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33202633</pmid><doi>10.3390/ijerph17228438</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-4601 |
ispartof | International journal of environmental research and public health, 2020-11, Vol.17 (22), p.8438, Article 8438 |
issn | 1660-4601 1661-7827 1660-4601 |
language | eng |
recordid | cdi_proquest_journals_2462173872 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Free Full-Text Journals in Chemistry |
subjects | Accidental Falls Accuracy Algorithms Cameras Cities Cracks Edge detection Environmental effects Environmental factors Environmental Sciences Environmental Sciences & Ecology Gaussian process Hazard identification Inspection Lasers Life Sciences & Biomedicine Light Machine learning Measurement techniques Portable equipment Public, Environmental & Occupational Health Regression analysis Risk Assessment Roads & highways Science & Technology Segmentation Stereoscopy Walkways |
title | A Vision-Based Approach for Sidewalk and Walkway Trip Hazards Assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Vision-Based%20Approach%20for%20Sidewalk%20and%20Walkway%20Trip%20Hazards%20Assessment&rft.jtitle=International%20journal%20of%20environmental%20research%20and%20public%20health&rft.au=Cohen,%20Rachel&rft.date=2020-11-14&rft.volume=17&rft.issue=22&rft.spage=8438&rft.pages=8438-&rft.artnum=8438&rft.issn=1660-4601&rft.eissn=1660-4601&rft_id=info:doi/10.3390/ijerph17228438&rft_dat=%3Cproquest_pubme%3E2462173872%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462173872&rft_id=info:pmid/33202633&rfr_iscdi=true |