K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant

Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2020-10, Vol.156 (10), p.1965-2019
Hauptverfasser: Ma, Shouhei, Yoshikawa, Ken-Ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2019
container_issue 10
container_start_page 1965
container_title Compositio mathematica
container_volume 156
creator Ma, Shouhei
Yoshikawa, Ken-Ichi
description Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
doi_str_mv 10.1112/S0010437X2000737X
format Article
fullrecord <record><control><sourceid>proquest_cambr</sourceid><recordid>TN_cdi_proquest_journals_2461860787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X2000737X</cupid><sourcerecordid>2461860787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-a4be1f959e1a85e677ec86a60e6fd11f55964833819132bfed5685d48bb8c8953</originalsourceid><addsrcrecordid>eNplkMtKAzEUhoMoWKsP4C7g1tFkcpmMOyleigUXVnE3ZGYSmzIzaXOp-AS-tmkruHB14Hwf_-H8AJxjdIUxzq9fEMKIkuI9RwgVaR6AEWYFypig_BCMtjjb8mNw4v0ySbnIxQh8PxHoo9OyUR5-mrCAZtjYLgZjh0uo1tFspDNyCFAOsvsKpoHBOr-jcmihjMH21q0WCWjreg_tAMNCwd62sTPQr1IynL7dwHla-uBiE6JT0OqdlY7t40_BkZadV2e_cwxe7-_mk8ds9vwwndzOsoZgGjJJa4V1yUqFpWCKF4VqBJccKa5bjDVjJaeCEIFLTPJaq5ZxwVoq6lo0omRkDC72uStn11H5UC1tdOk1X-WUY8FRIYpkkb3VyL52pv1QfxpG1bbx6l_j5Ac-0XVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461860787</pqid></control><display><type>article</type><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant</title><source>Cambridge Journals Online</source><source>EZB Electronic Journals Library</source><creator>Ma, Shouhei ; Yoshikawa, Ken-Ichi</creator><creatorcontrib>Ma, Shouhei ; Yoshikawa, Ken-Ichi</creatorcontrib><description>Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X2000737X</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Analytic functions ; Equality ; Invariants ; Mathematical analysis ; Modularity</subject><ispartof>Compositio mathematica, 2020-10, Vol.156 (10), p.1965-2019</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X2000737X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55607</link.rule.ids></links><search><creatorcontrib>Ma, Shouhei</creatorcontrib><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.</description><subject>Analytic functions</subject><subject>Equality</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Modularity</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkMtKAzEUhoMoWKsP4C7g1tFkcpmMOyleigUXVnE3ZGYSmzIzaXOp-AS-tmkruHB14Hwf_-H8AJxjdIUxzq9fEMKIkuI9RwgVaR6AEWYFypig_BCMtjjb8mNw4v0ySbnIxQh8PxHoo9OyUR5-mrCAZtjYLgZjh0uo1tFspDNyCFAOsvsKpoHBOr-jcmihjMH21q0WCWjreg_tAMNCwd62sTPQr1IynL7dwHla-uBiE6JT0OqdlY7t40_BkZadV2e_cwxe7-_mk8ds9vwwndzOsoZgGjJJa4V1yUqFpWCKF4VqBJccKa5bjDVjJaeCEIFLTPJaq5ZxwVoq6lo0omRkDC72uStn11H5UC1tdOk1X-WUY8FRIYpkkb3VyL52pv1QfxpG1bbx6l_j5Ac-0XVo</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ma, Shouhei</creator><creator>Yoshikawa, Ken-Ichi</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20201001</creationdate><title>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant</title><author>Ma, Shouhei ; Yoshikawa, Ken-Ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-a4be1f959e1a85e677ec86a60e6fd11f55964833819132bfed5685d48bb8c8953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytic functions</topic><topic>Equality</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Modularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Shouhei</creatorcontrib><creatorcontrib>Yoshikawa, Ken-Ichi</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Shouhei</au><au>Yoshikawa, Ken-Ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>156</volume><issue>10</issue><spage>1965</spage><epage>2019</epage><pages>1965-2019</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X2000737X</doi><tpages>55</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2020-10, Vol.156 (10), p.1965-2019
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_2461860787
source Cambridge Journals Online; EZB Electronic Journals Library
subjects Analytic functions
Equality
Invariants
Mathematical analysis
Modularity
title K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV: The structure of the invariant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cambr&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=K3%20surfaces%20with%20involution,%20equivariant%20analytic%20torsion,%20and%20automorphic%20forms%20on%20the%20moduli%20space%20IV:%20The%20structure%20of%20the%20invariant&rft.jtitle=Compositio%20mathematica&rft.au=Ma,%20Shouhei&rft.date=2020-10-01&rft.volume=156&rft.issue=10&rft.spage=1965&rft.epage=2019&rft.pages=1965-2019&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X2000737X&rft_dat=%3Cproquest_cambr%3E2461860787%3C/proquest_cambr%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461860787&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X2000737X&rfr_iscdi=true