Fingering instability in Marangoni spreading on a deep layer of polymer solution

Spreading on the free surface of a complex fluid is ubiquitous in nature and industry, such as drug delivery, oil spill, and surface treatment with patterns. Here, we report on a fingering instability that develops during Marangoni spreading on a deep layer of the polymer solution. In particular, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-11, Vol.32 (11)
Hauptverfasser: Ma, Xue, Zhong, Menglin, He, Yifeng, Liu, Zhanwei, Li, Zhenzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Ma, Xue
Zhong, Menglin
He, Yifeng
Liu, Zhanwei
Li, Zhenzhen
description Spreading on the free surface of a complex fluid is ubiquitous in nature and industry, such as drug delivery, oil spill, and surface treatment with patterns. Here, we report on a fingering instability that develops during Marangoni spreading on a deep layer of the polymer solution. In particular, the wavelength depends on the molecular weight and concentration of the polymer solution. We use the transmission lattice method to characterize the free surface morphology during spreading and the finger height at the micron scale. We use the Maxwell model to explain the spreading radius, which is dominated by elasticity at small time scales and by viscous dissipation at large time scales. In a viscous regime, with consideration of shear thinning, the spreading radius follows the universal 3/4 power law. Our model suggests a more generalized law of the spreading radius than the previous laws for Newtonian fluids. Furthermore, we give a physical explanation on the origin of the fingering instability as due to normal stresses at high shear rates generating a high contact angle, providing a necessary condition for the fingering instability. The normal stress also generates the elastic deformation at the leading edge and so selects the wavelength of the fingering instability. Understanding the spreading mechanism on a layer of viscoelastic fluid has a particular implication in airway drug delivery and surface coating.
doi_str_mv 10.1063/5.0028882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461681642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461681642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-de40bf65875b553d478449d4a6ac83a3805348f58f8a2ee3f2113a134349425a3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwmu_NHqVYFSp60HOY7iYlZZusyVbYf-8uLXj3MvMeHmaYQeiakntKFH-Q94QwrTU7QTNKdFWUSqnTKZekUIrTc3SR85YQwiumZuhj6cPGprFgH3IPa9_6fhgzfoMEYRODx7lLFpqJxIABN9Z2uIXBJhwd7mI77MaYY7vvfQyX6MxBm-3Vsc_R1_Lpc_FSrN6fXxePq6LmrOyLxgqydkrqUq6l5I0otRBVI0BBrTlwTSQX2kntNDBruWOUcqBccFEJJoHP0c1hbpfi997m3mzjPoVxpWFCUaWpEmxUtwdVp5hzss50ye8gDYYSMz3MSHN82GjvDjbXvofplv_hn5j-oOkax38B5j94QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461681642</pqid></control><display><type>article</type><title>Fingering instability in Marangoni spreading on a deep layer of polymer solution</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ma, Xue ; Zhong, Menglin ; He, Yifeng ; Liu, Zhanwei ; Li, Zhenzhen</creator><creatorcontrib>Ma, Xue ; Zhong, Menglin ; He, Yifeng ; Liu, Zhanwei ; Li, Zhenzhen</creatorcontrib><description>Spreading on the free surface of a complex fluid is ubiquitous in nature and industry, such as drug delivery, oil spill, and surface treatment with patterns. Here, we report on a fingering instability that develops during Marangoni spreading on a deep layer of the polymer solution. In particular, the wavelength depends on the molecular weight and concentration of the polymer solution. We use the transmission lattice method to characterize the free surface morphology during spreading and the finger height at the micron scale. We use the Maxwell model to explain the spreading radius, which is dominated by elasticity at small time scales and by viscous dissipation at large time scales. In a viscous regime, with consideration of shear thinning, the spreading radius follows the universal 3/4 power law. Our model suggests a more generalized law of the spreading radius than the previous laws for Newtonian fluids. Furthermore, we give a physical explanation on the origin of the fingering instability as due to normal stresses at high shear rates generating a high contact angle, providing a necessary condition for the fingering instability. The normal stress also generates the elastic deformation at the leading edge and so selects the wavelength of the fingering instability. Understanding the spreading mechanism on a layer of viscoelastic fluid has a particular implication in airway drug delivery and surface coating.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0028882</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Contact angle ; Contact stresses ; Drug delivery systems ; Elastic deformation ; Fluid dynamics ; Free surfaces ; Newtonian fluids ; Oil spills ; Physics ; Polymers ; Shear thinning (liquids) ; Surface treatment ; Time ; Viscoelastic fluids</subject><ispartof>Physics of fluids (1994), 2020-11, Vol.32 (11)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-de40bf65875b553d478449d4a6ac83a3805348f58f8a2ee3f2113a134349425a3</citedby><cites>FETCH-LOGICAL-c327t-de40bf65875b553d478449d4a6ac83a3805348f58f8a2ee3f2113a134349425a3</cites><orcidid>0000-0003-3403-210X ; 0000-0002-2681-8551 ; 0000-0002-5318-956X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Ma, Xue</creatorcontrib><creatorcontrib>Zhong, Menglin</creatorcontrib><creatorcontrib>He, Yifeng</creatorcontrib><creatorcontrib>Liu, Zhanwei</creatorcontrib><creatorcontrib>Li, Zhenzhen</creatorcontrib><title>Fingering instability in Marangoni spreading on a deep layer of polymer solution</title><title>Physics of fluids (1994)</title><description>Spreading on the free surface of a complex fluid is ubiquitous in nature and industry, such as drug delivery, oil spill, and surface treatment with patterns. Here, we report on a fingering instability that develops during Marangoni spreading on a deep layer of the polymer solution. In particular, the wavelength depends on the molecular weight and concentration of the polymer solution. We use the transmission lattice method to characterize the free surface morphology during spreading and the finger height at the micron scale. We use the Maxwell model to explain the spreading radius, which is dominated by elasticity at small time scales and by viscous dissipation at large time scales. In a viscous regime, with consideration of shear thinning, the spreading radius follows the universal 3/4 power law. Our model suggests a more generalized law of the spreading radius than the previous laws for Newtonian fluids. Furthermore, we give a physical explanation on the origin of the fingering instability as due to normal stresses at high shear rates generating a high contact angle, providing a necessary condition for the fingering instability. The normal stress also generates the elastic deformation at the leading edge and so selects the wavelength of the fingering instability. Understanding the spreading mechanism on a layer of viscoelastic fluid has a particular implication in airway drug delivery and surface coating.</description><subject>Computational fluid dynamics</subject><subject>Contact angle</subject><subject>Contact stresses</subject><subject>Drug delivery systems</subject><subject>Elastic deformation</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Newtonian fluids</subject><subject>Oil spills</subject><subject>Physics</subject><subject>Polymers</subject><subject>Shear thinning (liquids)</subject><subject>Surface treatment</subject><subject>Time</subject><subject>Viscoelastic fluids</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwmu_NHqVYFSp60HOY7iYlZZusyVbYf-8uLXj3MvMeHmaYQeiakntKFH-Q94QwrTU7QTNKdFWUSqnTKZekUIrTc3SR85YQwiumZuhj6cPGprFgH3IPa9_6fhgzfoMEYRODx7lLFpqJxIABN9Z2uIXBJhwd7mI77MaYY7vvfQyX6MxBm-3Vsc_R1_Lpc_FSrN6fXxePq6LmrOyLxgqydkrqUq6l5I0otRBVI0BBrTlwTSQX2kntNDBruWOUcqBccFEJJoHP0c1hbpfi997m3mzjPoVxpWFCUaWpEmxUtwdVp5hzss50ye8gDYYSMz3MSHN82GjvDjbXvofplv_hn5j-oOkax38B5j94QQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ma, Xue</creator><creator>Zhong, Menglin</creator><creator>He, Yifeng</creator><creator>Liu, Zhanwei</creator><creator>Li, Zhenzhen</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3403-210X</orcidid><orcidid>https://orcid.org/0000-0002-2681-8551</orcidid><orcidid>https://orcid.org/0000-0002-5318-956X</orcidid></search><sort><creationdate>20201101</creationdate><title>Fingering instability in Marangoni spreading on a deep layer of polymer solution</title><author>Ma, Xue ; Zhong, Menglin ; He, Yifeng ; Liu, Zhanwei ; Li, Zhenzhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-de40bf65875b553d478449d4a6ac83a3805348f58f8a2ee3f2113a134349425a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Contact angle</topic><topic>Contact stresses</topic><topic>Drug delivery systems</topic><topic>Elastic deformation</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Newtonian fluids</topic><topic>Oil spills</topic><topic>Physics</topic><topic>Polymers</topic><topic>Shear thinning (liquids)</topic><topic>Surface treatment</topic><topic>Time</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Xue</creatorcontrib><creatorcontrib>Zhong, Menglin</creatorcontrib><creatorcontrib>He, Yifeng</creatorcontrib><creatorcontrib>Liu, Zhanwei</creatorcontrib><creatorcontrib>Li, Zhenzhen</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Xue</au><au>Zhong, Menglin</au><au>He, Yifeng</au><au>Liu, Zhanwei</au><au>Li, Zhenzhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingering instability in Marangoni spreading on a deep layer of polymer solution</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>11</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Spreading on the free surface of a complex fluid is ubiquitous in nature and industry, such as drug delivery, oil spill, and surface treatment with patterns. Here, we report on a fingering instability that develops during Marangoni spreading on a deep layer of the polymer solution. In particular, the wavelength depends on the molecular weight and concentration of the polymer solution. We use the transmission lattice method to characterize the free surface morphology during spreading and the finger height at the micron scale. We use the Maxwell model to explain the spreading radius, which is dominated by elasticity at small time scales and by viscous dissipation at large time scales. In a viscous regime, with consideration of shear thinning, the spreading radius follows the universal 3/4 power law. Our model suggests a more generalized law of the spreading radius than the previous laws for Newtonian fluids. Furthermore, we give a physical explanation on the origin of the fingering instability as due to normal stresses at high shear rates generating a high contact angle, providing a necessary condition for the fingering instability. The normal stress also generates the elastic deformation at the leading edge and so selects the wavelength of the fingering instability. Understanding the spreading mechanism on a layer of viscoelastic fluid has a particular implication in airway drug delivery and surface coating.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0028882</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3403-210X</orcidid><orcidid>https://orcid.org/0000-0002-2681-8551</orcidid><orcidid>https://orcid.org/0000-0002-5318-956X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-11, Vol.32 (11)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2461681642
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computational fluid dynamics
Contact angle
Contact stresses
Drug delivery systems
Elastic deformation
Fluid dynamics
Free surfaces
Newtonian fluids
Oil spills
Physics
Polymers
Shear thinning (liquids)
Surface treatment
Time
Viscoelastic fluids
title Fingering instability in Marangoni spreading on a deep layer of polymer solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingering%20instability%20in%20Marangoni%20spreading%20on%20a%20deep%20layer%20of%20polymer%20solution&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Ma,%20Xue&rft.date=2020-11-01&rft.volume=32&rft.issue=11&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0028882&rft_dat=%3Cproquest_cross%3E2461681642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461681642&rft_id=info:pmid/&rfr_iscdi=true