Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces
We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutati...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-11, Vol.12 (11), p.1867 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1867 |
container_title | Symmetry (Basel) |
container_volume | 12 |
creator | Breev, Alexander Shapovalov, Alexander |
description | We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutative integration method of linear partial differential equations on Lie groups. This method differs from the well-known method of separation of variables and to some extent can often supplement it. The general structure of the method developed is illustrated with an example of a homogeneous space which does not admit separation of variables in the Dirac equation. However, the basis of exact solutions to the Dirac equation is constructed explicitly by the non-commutative integration method. In addition, we construct a complete set of new exact solutions to the Dirac equation in the three-dimensional de Sitter space-time AdS3 using the method developed. The solutions obtained are found in terms of elementary functions, which is characteristic of the non-commutative integration method. |
doi_str_mv | 10.3390/sym12111867 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461186435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461186435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-daf84cfa6e70abb9614049d21b9ae76903aa5d941998a369dbc89c5425f7cab23</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNSe_AILHiW6_7LJHCXWtlD0oJ7DZLOpKSab7iZCv31T4qFzeY_HjxnmEXLP2ZOUwJ7DseGCc57q5IrMBEtklAKo6wt_SxYh7Nk4MYuVZjOyendtlLmmGXrs6z9LN21vd370rqWuov2Ppa-1R0OXh2FK65auXeN2trVuCPSzQ2PDHbmp8DfYxb_Oyffb8itbR9uP1SZ72UZGQNpHJVapMhVqmzAsCtBcMQWl4AWgTTQwiRiXoDhAilJDWZgUTKxEXCUGCyHn5GHa23l3GGzo870bfDuezIXS5-eVjEfqcaKMdyF4W-Wdrxv0x5yz_FxWflGWPAEKaFxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461186435</pqid></control><display><type>article</type><title>Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Breev, Alexander ; Shapovalov, Alexander</creator><creatorcontrib>Breev, Alexander ; Shapovalov, Alexander</creatorcontrib><description>We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutative integration method of linear partial differential equations on Lie groups. This method differs from the well-known method of separation of variables and to some extent can often supplement it. The general structure of the method developed is illustrated with an example of a homogeneous space which does not admit separation of variables in the Dirac equation. However, the basis of exact solutions to the Dirac equation is constructed explicitly by the non-commutative integration method. In addition, we construct a complete set of new exact solutions to the Dirac equation in the three-dimensional de Sitter space-time AdS3 using the method developed. The solutions obtained are found in terms of elementary functions, which is characteristic of the non-commutative integration method.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym12111867</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Dirac equation ; Exact solutions ; Generators ; Integrals ; Lie groups ; Mathematical analysis ; Ordinary differential equations ; Partial differential equations ; Quantum field theory ; Separation ; Spacetime ; Symmetry</subject><ispartof>Symmetry (Basel), 2020-11, Vol.12 (11), p.1867</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-daf84cfa6e70abb9614049d21b9ae76903aa5d941998a369dbc89c5425f7cab23</citedby><cites>FETCH-LOGICAL-c298t-daf84cfa6e70abb9614049d21b9ae76903aa5d941998a369dbc89c5425f7cab23</cites><orcidid>0000-0001-6038-1288 ; 0000-0003-2170-1503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Breev, Alexander</creatorcontrib><creatorcontrib>Shapovalov, Alexander</creatorcontrib><title>Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces</title><title>Symmetry (Basel)</title><description>We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutative integration method of linear partial differential equations on Lie groups. This method differs from the well-known method of separation of variables and to some extent can often supplement it. The general structure of the method developed is illustrated with an example of a homogeneous space which does not admit separation of variables in the Dirac equation. However, the basis of exact solutions to the Dirac equation is constructed explicitly by the non-commutative integration method. In addition, we construct a complete set of new exact solutions to the Dirac equation in the three-dimensional de Sitter space-time AdS3 using the method developed. The solutions obtained are found in terms of elementary functions, which is characteristic of the non-commutative integration method.</description><subject>Dirac equation</subject><subject>Exact solutions</subject><subject>Generators</subject><subject>Integrals</subject><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Quantum field theory</subject><subject>Separation</subject><subject>Spacetime</subject><subject>Symmetry</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkE9Lw0AQxRdRsNSe_AILHiW6_7LJHCXWtlD0oJ7DZLOpKSab7iZCv31T4qFzeY_HjxnmEXLP2ZOUwJ7DseGCc57q5IrMBEtklAKo6wt_SxYh7Nk4MYuVZjOyendtlLmmGXrs6z9LN21vd370rqWuov2Ppa-1R0OXh2FK65auXeN2trVuCPSzQ2PDHbmp8DfYxb_Oyffb8itbR9uP1SZ72UZGQNpHJVapMhVqmzAsCtBcMQWl4AWgTTQwiRiXoDhAilJDWZgUTKxEXCUGCyHn5GHa23l3GGzo870bfDuezIXS5-eVjEfqcaKMdyF4W-Wdrxv0x5yz_FxWflGWPAEKaFxK</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Breev, Alexander</creator><creator>Shapovalov, Alexander</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6038-1288</orcidid><orcidid>https://orcid.org/0000-0003-2170-1503</orcidid></search><sort><creationdate>20201101</creationdate><title>Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces</title><author>Breev, Alexander ; Shapovalov, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-daf84cfa6e70abb9614049d21b9ae76903aa5d941998a369dbc89c5425f7cab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dirac equation</topic><topic>Exact solutions</topic><topic>Generators</topic><topic>Integrals</topic><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Quantum field theory</topic><topic>Separation</topic><topic>Spacetime</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breev, Alexander</creatorcontrib><creatorcontrib>Shapovalov, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breev, Alexander</au><au>Shapovalov, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces</atitle><jtitle>Symmetry (Basel)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>12</volume><issue>11</issue><spage>1867</spage><pages>1867-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>We develop a non-commutative integration method for the Dirac equation in homogeneous spaces. The Dirac equation with an invariant metric is shown to be equivalent to a system of equations on a Lie group of transformations of a homogeneous space. This allows us to effectively apply the non-commutative integration method of linear partial differential equations on Lie groups. This method differs from the well-known method of separation of variables and to some extent can often supplement it. The general structure of the method developed is illustrated with an example of a homogeneous space which does not admit separation of variables in the Dirac equation. However, the basis of exact solutions to the Dirac equation is constructed explicitly by the non-commutative integration method. In addition, we construct a complete set of new exact solutions to the Dirac equation in the three-dimensional de Sitter space-time AdS3 using the method developed. The solutions obtained are found in terms of elementary functions, which is characteristic of the non-commutative integration method.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym12111867</doi><orcidid>https://orcid.org/0000-0001-6038-1288</orcidid><orcidid>https://orcid.org/0000-0003-2170-1503</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-8994 |
ispartof | Symmetry (Basel), 2020-11, Vol.12 (11), p.1867 |
issn | 2073-8994 2073-8994 |
language | eng |
recordid | cdi_proquest_journals_2461186435 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Dirac equation Exact solutions Generators Integrals Lie groups Mathematical analysis Ordinary differential equations Partial differential equations Quantum field theory Separation Spacetime Symmetry |
title | Non-Commutative Integration of the Dirac Equation in Homogeneous Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Commutative%20Integration%20of%20the%20Dirac%20Equation%20in%20Homogeneous%20Spaces&rft.jtitle=Symmetry%20(Basel)&rft.au=Breev,%20Alexander&rft.date=2020-11-01&rft.volume=12&rft.issue=11&rft.spage=1867&rft.pages=1867-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym12111867&rft_dat=%3Cproquest_cross%3E2461186435%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461186435&rft_id=info:pmid/&rfr_iscdi=true |