A study on the least squares estimator of multivariate isotonic regression function

Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2020-12, Vol.47 (4), p.1192-1221, Article 1192
Hauptverfasser: Bagchi, Pramita, Sankar Dhar, Subhra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1221
container_issue 4
container_start_page 1192
container_title Scandinavian journal of statistics
container_volume 47
creator Bagchi, Pramita
Sankar Dhar, Subhra
description Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.
doi_str_mv 10.1111/sjos.12459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461094240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461094240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-56cc31aae66f970cb92bd3c6b8a40c2a5797eed775f942a8a6b4db4d958d61903</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcXP0HAm9CZtGnaHMfQqQx2mJ5Dmqaa0TVbXqrs25taTyKGB3mH3-8l74_QNSUzGs8dbB3MaMpycYImlPEiEYyLUzQhGckSXoryHF0AbAmhnNFygjZzDKGvj9h1OLwb3BoFAcOhV94ANhDsTgXnsWvwrm-D_VDeqmCwBRdcZzX25i2SYKPf9J0OsblEZ41qwVz93FP0-nD_snhMVuvl02K-SnRGqEhyrnVGlTKcN6IguhJpVWeaV6ViRKcqL0RhTF0UeSNYqkrFK1bHEnlZcypINkU349y9d4c-_lVuXe-7-KRMGackWmygbkdKewfgTSP3Pi7lj5ISOYQmh9Dkd2gRJr9gbYMalgpe2fZvhY7Kp23N8Z_hcvO83ozOF38WgUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461094240</pqid></control><display><type>article</type><title>A study on the least squares estimator of multivariate isotonic regression function</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Bagchi, Pramita ; Sankar Dhar, Subhra</creator><creatorcontrib>Bagchi, Pramita ; Sankar Dhar, Subhra</creatorcontrib><description>Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/sjos.12459</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>consistency ; convex function ; cumulative sum diagram ; Error analysis ; Fixed points (mathematics) ; Least squares ; Multivariate analysis ; nonstandard asymptotic distribution ; rate of convergence ; Regression models</subject><ispartof>Scandinavian journal of statistics, 2020-12, Vol.47 (4), p.1192-1221, Article 1192</ispartof><rights>2020 Board of the Foundation of the Scandinavian Journal of Statistics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-56cc31aae66f970cb92bd3c6b8a40c2a5797eed775f942a8a6b4db4d958d61903</citedby><cites>FETCH-LOGICAL-c3019-56cc31aae66f970cb92bd3c6b8a40c2a5797eed775f942a8a6b4db4d958d61903</cites><orcidid>0000-0003-1766-2767 ; 0000-0003-1355-3635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsjos.12459$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsjos.12459$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Bagchi, Pramita</creatorcontrib><creatorcontrib>Sankar Dhar, Subhra</creatorcontrib><title>A study on the least squares estimator of multivariate isotonic regression function</title><title>Scandinavian journal of statistics</title><description>Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.</description><subject>consistency</subject><subject>convex function</subject><subject>cumulative sum diagram</subject><subject>Error analysis</subject><subject>Fixed points (mathematics)</subject><subject>Least squares</subject><subject>Multivariate analysis</subject><subject>nonstandard asymptotic distribution</subject><subject>rate of convergence</subject><subject>Regression models</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcXP0HAm9CZtGnaHMfQqQx2mJ5Dmqaa0TVbXqrs25taTyKGB3mH3-8l74_QNSUzGs8dbB3MaMpycYImlPEiEYyLUzQhGckSXoryHF0AbAmhnNFygjZzDKGvj9h1OLwb3BoFAcOhV94ANhDsTgXnsWvwrm-D_VDeqmCwBRdcZzX25i2SYKPf9J0OsblEZ41qwVz93FP0-nD_snhMVuvl02K-SnRGqEhyrnVGlTKcN6IguhJpVWeaV6ViRKcqL0RhTF0UeSNYqkrFK1bHEnlZcypINkU349y9d4c-_lVuXe-7-KRMGackWmygbkdKewfgTSP3Pi7lj5ISOYQmh9Dkd2gRJr9gbYMalgpe2fZvhY7Kp23N8Z_hcvO83ozOF38WgUo</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Bagchi, Pramita</creator><creator>Sankar Dhar, Subhra</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1766-2767</orcidid><orcidid>https://orcid.org/0000-0003-1355-3635</orcidid></search><sort><creationdate>202012</creationdate><title>A study on the least squares estimator of multivariate isotonic regression function</title><author>Bagchi, Pramita ; Sankar Dhar, Subhra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-56cc31aae66f970cb92bd3c6b8a40c2a5797eed775f942a8a6b4db4d958d61903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>consistency</topic><topic>convex function</topic><topic>cumulative sum diagram</topic><topic>Error analysis</topic><topic>Fixed points (mathematics)</topic><topic>Least squares</topic><topic>Multivariate analysis</topic><topic>nonstandard asymptotic distribution</topic><topic>rate of convergence</topic><topic>Regression models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagchi, Pramita</creatorcontrib><creatorcontrib>Sankar Dhar, Subhra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagchi, Pramita</au><au>Sankar Dhar, Subhra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on the least squares estimator of multivariate isotonic regression function</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2020-12</date><risdate>2020</risdate><volume>47</volume><issue>4</issue><spage>1192</spage><epage>1221</epage><pages>1192-1221</pages><artnum>1192</artnum><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>Consider the problem of pointwise estimation of f in a multivariate isotonic regression model Z=f(X1,…,Xd)+ϵ, where Z is the response variable, f is an unknown nonparametric regression function, which is isotonic with respect to each component, and ϵ is the error term. In this article, we investigate the behavior of the least squares estimator of f. We generalize the greatest convex minorant characterization of isotonic regression estimator for the multivariate case and use it to establish the asymptotic distribution of properly normalized version of the estimator. Moreover, we test whether the multivariate isotonic regression function at a fixed point is larger (or smaller) than a specified value or not based on this estimator, and the consistency of the test is established. The practicability of the estimator and the test are shown on simulated and real data as well.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sjos.12459</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-1766-2767</orcidid><orcidid>https://orcid.org/0000-0003-1355-3635</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0303-6898
ispartof Scandinavian journal of statistics, 2020-12, Vol.47 (4), p.1192-1221, Article 1192
issn 0303-6898
1467-9469
language eng
recordid cdi_proquest_journals_2461094240
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects consistency
convex function
cumulative sum diagram
Error analysis
Fixed points (mathematics)
Least squares
Multivariate analysis
nonstandard asymptotic distribution
rate of convergence
Regression models
title A study on the least squares estimator of multivariate isotonic regression function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A27%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20the%20least%20squares%20estimator%20of%20multivariate%20isotonic%20regression%20function&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Bagchi,%20Pramita&rft.date=2020-12&rft.volume=47&rft.issue=4&rft.spage=1192&rft.epage=1221&rft.pages=1192-1221&rft.artnum=1192&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/sjos.12459&rft_dat=%3Cproquest_cross%3E2461094240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461094240&rft_id=info:pmid/&rfr_iscdi=true