A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes
•Tri-electrode battery configurations using gel polymer electrolytes are studied.•Effects of crosslinking density on OER is evaluated.•Effects of ZnO on ORR and OER are revealed separately.•Cycling performance is shown in different orientations without leaking. To increase the cyclability of recharg...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-10, Vol.357, p.136865, Article 136865 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 136865 |
container_title | Electrochimica acta |
container_volume | 357 |
creator | Tran, Thuy Nguyen Thanh Clark, Michael P. Xiong, Ming Chung, Hyun-Joong Ivey, Douglas G. |
description | •Tri-electrode battery configurations using gel polymer electrolytes are studied.•Effects of crosslinking density on OER is evaluated.•Effects of ZnO on ORR and OER are revealed separately.•Cycling performance is shown in different orientations without leaking.
To increase the cyclability of rechargeable zinc-air batteries (ZABs) using gel polymer electrolytes (GPEs), battery design and structure need to be optimized. Two different configurations for a tri-electrode battery have been developed in this work; i.e., a planar cell and a sandwich cell. Discharge-recharge cycling tests at 5 mA cm–2 show that the sandwich cell is more suitable for ZABs than the planar cell. Various additives for the GPEs, such as cross linking agents and ZnO, have also been evaluated using the tri-electrode design. Cross linking density affects the physical state of GPEs, which in turn affects the oxygen evolution reaction as there is an adverse effect of excessive GPE/Ni foam electrode contact area because oxygen bubbles may be trapped in the GPE. The addition of ZnO to the oxygen reduction reaction side of the battery enhances the cycling performance of ZABs; i.e., the battery can withstand at least 100 cycles at 5 mA cm–2 with an efficiency of 62% during the first cycle.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2020.136865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461034104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620312585</els_id><sourcerecordid>2461034104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3d0829ba3eef40133a10c57c6f169459cf1db06cab8488d8680bfc372c5d76073</originalsourceid><addsrcrecordid>eNqFkN9LwzAQx4MoOKd_gwGfOy9Nm2SPY_gLBj6ozyFNryOla2bSCvOvN7PDV-Hg4O57n7v7EnLLYMGAift2gR3awaRY5JCnKhdKlGdkxpTkGVfl8pzMABjPitS4JFcxtgAghYQZeVvRIbjsFxF8jdT6vnHbMZjB-Z42PtBv19vMuEArMwwYHEY6Rtdv6RY7uvfdYYeBngDdYcB4TS4a00W8OeU5-Xh8eF8_Z5vXp5f1apNZXvAh4zWofFkZjtgU6TxuGNhSWtEwsSzKpW1YXYGwplKFUrUSCqrGcpnbspYCJJ-Tu4m7D_5zxDjo1o-hTyt1XggGvGBQJJWcVDb4GAM2eh_czoSDZqCPDupW_zmojw7qycE0uZomMT3x5TDoaB32FmsXkl7X3v3L-AFEU352</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461034104</pqid></control><display><type>article</type><title>A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tran, Thuy Nguyen Thanh ; Clark, Michael P. ; Xiong, Ming ; Chung, Hyun-Joong ; Ivey, Douglas G.</creator><creatorcontrib>Tran, Thuy Nguyen Thanh ; Clark, Michael P. ; Xiong, Ming ; Chung, Hyun-Joong ; Ivey, Douglas G.</creatorcontrib><description>•Tri-electrode battery configurations using gel polymer electrolytes are studied.•Effects of crosslinking density on OER is evaluated.•Effects of ZnO on ORR and OER are revealed separately.•Cycling performance is shown in different orientations without leaking.
To increase the cyclability of rechargeable zinc-air batteries (ZABs) using gel polymer electrolytes (GPEs), battery design and structure need to be optimized. Two different configurations for a tri-electrode battery have been developed in this work; i.e., a planar cell and a sandwich cell. Discharge-recharge cycling tests at 5 mA cm–2 show that the sandwich cell is more suitable for ZABs than the planar cell. Various additives for the GPEs, such as cross linking agents and ZnO, have also been evaluated using the tri-electrode design. Cross linking density affects the physical state of GPEs, which in turn affects the oxygen evolution reaction as there is an adverse effect of excessive GPE/Ni foam electrode contact area because oxygen bubbles may be trapped in the GPE. The addition of ZnO to the oxygen reduction reaction side of the battery enhances the cycling performance of ZABs; i.e., the battery can withstand at least 100 cycles at 5 mA cm–2 with an efficiency of 62% during the first cycle.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.136865</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Additives ; Battery geometry ; Configurations ; Crosslinking ; Cycles ; Decoupled air electrode ; Design optimization ; Electrodes ; Electrolytes ; Hydrogel electrolyte ; Metal air batteries ; Metal foams ; Oxygen evolution reactions ; Oxygen reduction reactions ; Poly(acrylic acid) ; Polymers ; Reagents ; Rechargeable batteries ; Zinc oxide ; Zinc-oxygen batteries</subject><ispartof>Electrochimica acta, 2020-10, Vol.357, p.136865, Article 136865</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Oct 10, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3d0829ba3eef40133a10c57c6f169459cf1db06cab8488d8680bfc372c5d76073</citedby><cites>FETCH-LOGICAL-c343t-3d0829ba3eef40133a10c57c6f169459cf1db06cab8488d8680bfc372c5d76073</cites><orcidid>0000-0002-2429-9786 ; 0000-0002-9504-3569</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2020.136865$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Tran, Thuy Nguyen Thanh</creatorcontrib><creatorcontrib>Clark, Michael P.</creatorcontrib><creatorcontrib>Xiong, Ming</creatorcontrib><creatorcontrib>Chung, Hyun-Joong</creatorcontrib><creatorcontrib>Ivey, Douglas G.</creatorcontrib><title>A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes</title><title>Electrochimica acta</title><description>•Tri-electrode battery configurations using gel polymer electrolytes are studied.•Effects of crosslinking density on OER is evaluated.•Effects of ZnO on ORR and OER are revealed separately.•Cycling performance is shown in different orientations without leaking.
To increase the cyclability of rechargeable zinc-air batteries (ZABs) using gel polymer electrolytes (GPEs), battery design and structure need to be optimized. Two different configurations for a tri-electrode battery have been developed in this work; i.e., a planar cell and a sandwich cell. Discharge-recharge cycling tests at 5 mA cm–2 show that the sandwich cell is more suitable for ZABs than the planar cell. Various additives for the GPEs, such as cross linking agents and ZnO, have also been evaluated using the tri-electrode design. Cross linking density affects the physical state of GPEs, which in turn affects the oxygen evolution reaction as there is an adverse effect of excessive GPE/Ni foam electrode contact area because oxygen bubbles may be trapped in the GPE. The addition of ZnO to the oxygen reduction reaction side of the battery enhances the cycling performance of ZABs; i.e., the battery can withstand at least 100 cycles at 5 mA cm–2 with an efficiency of 62% during the first cycle.
[Display omitted]</description><subject>Additives</subject><subject>Battery geometry</subject><subject>Configurations</subject><subject>Crosslinking</subject><subject>Cycles</subject><subject>Decoupled air electrode</subject><subject>Design optimization</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Hydrogel electrolyte</subject><subject>Metal air batteries</subject><subject>Metal foams</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Poly(acrylic acid)</subject><subject>Polymers</subject><subject>Reagents</subject><subject>Rechargeable batteries</subject><subject>Zinc oxide</subject><subject>Zinc-oxygen batteries</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN9LwzAQx4MoOKd_gwGfOy9Nm2SPY_gLBj6ozyFNryOla2bSCvOvN7PDV-Hg4O57n7v7EnLLYMGAift2gR3awaRY5JCnKhdKlGdkxpTkGVfl8pzMABjPitS4JFcxtgAghYQZeVvRIbjsFxF8jdT6vnHbMZjB-Z42PtBv19vMuEArMwwYHEY6Rtdv6RY7uvfdYYeBngDdYcB4TS4a00W8OeU5-Xh8eF8_Z5vXp5f1apNZXvAh4zWofFkZjtgU6TxuGNhSWtEwsSzKpW1YXYGwplKFUrUSCqrGcpnbspYCJJ-Tu4m7D_5zxDjo1o-hTyt1XggGvGBQJJWcVDb4GAM2eh_czoSDZqCPDupW_zmojw7qycE0uZomMT3x5TDoaB32FmsXkl7X3v3L-AFEU352</recordid><startdate>20201010</startdate><enddate>20201010</enddate><creator>Tran, Thuy Nguyen Thanh</creator><creator>Clark, Michael P.</creator><creator>Xiong, Ming</creator><creator>Chung, Hyun-Joong</creator><creator>Ivey, Douglas G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2429-9786</orcidid><orcidid>https://orcid.org/0000-0002-9504-3569</orcidid></search><sort><creationdate>20201010</creationdate><title>A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes</title><author>Tran, Thuy Nguyen Thanh ; Clark, Michael P. ; Xiong, Ming ; Chung, Hyun-Joong ; Ivey, Douglas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3d0829ba3eef40133a10c57c6f169459cf1db06cab8488d8680bfc372c5d76073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additives</topic><topic>Battery geometry</topic><topic>Configurations</topic><topic>Crosslinking</topic><topic>Cycles</topic><topic>Decoupled air electrode</topic><topic>Design optimization</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Hydrogel electrolyte</topic><topic>Metal air batteries</topic><topic>Metal foams</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Poly(acrylic acid)</topic><topic>Polymers</topic><topic>Reagents</topic><topic>Rechargeable batteries</topic><topic>Zinc oxide</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Thuy Nguyen Thanh</creatorcontrib><creatorcontrib>Clark, Michael P.</creatorcontrib><creatorcontrib>Xiong, Ming</creatorcontrib><creatorcontrib>Chung, Hyun-Joong</creatorcontrib><creatorcontrib>Ivey, Douglas G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Thuy Nguyen Thanh</au><au>Clark, Michael P.</au><au>Xiong, Ming</au><au>Chung, Hyun-Joong</au><au>Ivey, Douglas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes</atitle><jtitle>Electrochimica acta</jtitle><date>2020-10-10</date><risdate>2020</risdate><volume>357</volume><spage>136865</spage><pages>136865-</pages><artnum>136865</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Tri-electrode battery configurations using gel polymer electrolytes are studied.•Effects of crosslinking density on OER is evaluated.•Effects of ZnO on ORR and OER are revealed separately.•Cycling performance is shown in different orientations without leaking.
To increase the cyclability of rechargeable zinc-air batteries (ZABs) using gel polymer electrolytes (GPEs), battery design and structure need to be optimized. Two different configurations for a tri-electrode battery have been developed in this work; i.e., a planar cell and a sandwich cell. Discharge-recharge cycling tests at 5 mA cm–2 show that the sandwich cell is more suitable for ZABs than the planar cell. Various additives for the GPEs, such as cross linking agents and ZnO, have also been evaluated using the tri-electrode design. Cross linking density affects the physical state of GPEs, which in turn affects the oxygen evolution reaction as there is an adverse effect of excessive GPE/Ni foam electrode contact area because oxygen bubbles may be trapped in the GPE. The addition of ZnO to the oxygen reduction reaction side of the battery enhances the cycling performance of ZABs; i.e., the battery can withstand at least 100 cycles at 5 mA cm–2 with an efficiency of 62% during the first cycle.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.136865</doi><orcidid>https://orcid.org/0000-0002-2429-9786</orcidid><orcidid>https://orcid.org/0000-0002-9504-3569</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-10, Vol.357, p.136865, Article 136865 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2461034104 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Additives Battery geometry Configurations Crosslinking Cycles Decoupled air electrode Design optimization Electrodes Electrolytes Hydrogel electrolyte Metal air batteries Metal foams Oxygen evolution reactions Oxygen reduction reactions Poly(acrylic acid) Polymers Reagents Rechargeable batteries Zinc oxide Zinc-oxygen batteries |
title | A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20tri-electrode%20configuration%20for%20zinc-air%20batteries%20using%20gel%20polymer%20electrolytes&rft.jtitle=Electrochimica%20acta&rft.au=Tran,%20Thuy%20Nguyen%20Thanh&rft.date=2020-10-10&rft.volume=357&rft.spage=136865&rft.pages=136865-&rft.artnum=136865&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.136865&rft_dat=%3Cproquest_cross%3E2461034104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461034104&rft_id=info:pmid/&rft_els_id=S0013468620312585&rfr_iscdi=true |