Thermal expansion and heat capacity of thulium orthotantalate
Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic l...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2021-01, Vol.850, p.156659, Article 156659 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 156659 |
container_title | Journal of alloys and compounds |
container_volume | 850 |
creator | Gagarin, P.G. Guskov, A.V. Guskov, V.N. Tyurin, A.V. Khoroshilov, A.V. Gavrichev, K.S. |
description | Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined.
[Display omitted]
•M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated. |
doi_str_mv | 10.1016/j.jallcom.2020.156659 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461033219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820330231</els_id><sourcerecordid>2461033219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</originalsourceid><addsrcrecordid>eNqFkEFLxDAUhIMouK7-BKHguWvSNGlzEJHFVWHBy3oOafpCU9qmJqm4_94u3bungcfMPOZD6J7gDcGEP7abVnWddv0mw9l8Y5wzcYFWpCxomnMuLtEKi4ylJS3La3QTQosxJoKSFXo6NOB71SXwO6ohWDckaqiTBlRMtBqVtvGYOJPEZurs1CfOx8ZFNUTVqQi36MqoLsDdWdfoa_d62L6n-8-3j-3LPtWUFjE1vCLEYKhEVZeiMkKoklcFcJIX1AhMq4JRnRnNDBjONOOaQS40KwjOVS7oGj0svaN33xOEKFs3-WF-KbOcE0xpRk4utri0dyF4MHL0tlf-KAmWJ1KylWdS8kRKLqTm3POSg3nCjwUvg7YwaKitBx1l7ew_DX9H9HRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461033219</pqid></control><display><type>article</type><title>Thermal expansion and heat capacity of thulium orthotantalate</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gagarin, P.G. ; Guskov, A.V. ; Guskov, V.N. ; Tyurin, A.V. ; Khoroshilov, A.V. ; Gavrichev, K.S.</creator><creatorcontrib>Gagarin, P.G. ; Guskov, A.V. ; Guskov, V.N. ; Tyurin, A.V. ; Khoroshilov, A.V. ; Gavrichev, K.S.</creatorcontrib><description>Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined.
[Display omitted]
•M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156659</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Calcination ; Chemical analysis ; Chemical properties ; Enthalpy ; Heat ; High temperature ; Lattice parameters ; Mathematical analysis ; Monoclinic lattice ; Phase transitions ; Refractories ; Specific heat ; Thermal expansion ; Thulium ; X ray powder diffraction</subject><ispartof>Journal of alloys and compounds, 2021-01, Vol.850, p.156659, Article 156659</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</citedby><cites>FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.156659$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gagarin, P.G.</creatorcontrib><creatorcontrib>Guskov, A.V.</creatorcontrib><creatorcontrib>Guskov, V.N.</creatorcontrib><creatorcontrib>Tyurin, A.V.</creatorcontrib><creatorcontrib>Khoroshilov, A.V.</creatorcontrib><creatorcontrib>Gavrichev, K.S.</creatorcontrib><title>Thermal expansion and heat capacity of thulium orthotantalate</title><title>Journal of alloys and compounds</title><description>Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined.
[Display omitted]
•M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.</description><subject>Calcination</subject><subject>Chemical analysis</subject><subject>Chemical properties</subject><subject>Enthalpy</subject><subject>Heat</subject><subject>High temperature</subject><subject>Lattice parameters</subject><subject>Mathematical analysis</subject><subject>Monoclinic lattice</subject><subject>Phase transitions</subject><subject>Refractories</subject><subject>Specific heat</subject><subject>Thermal expansion</subject><subject>Thulium</subject><subject>X ray powder diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAUhIMouK7-BKHguWvSNGlzEJHFVWHBy3oOafpCU9qmJqm4_94u3bungcfMPOZD6J7gDcGEP7abVnWddv0mw9l8Y5wzcYFWpCxomnMuLtEKi4ylJS3La3QTQosxJoKSFXo6NOB71SXwO6ohWDckaqiTBlRMtBqVtvGYOJPEZurs1CfOx8ZFNUTVqQi36MqoLsDdWdfoa_d62L6n-8-3j-3LPtWUFjE1vCLEYKhEVZeiMkKoklcFcJIX1AhMq4JRnRnNDBjONOOaQS40KwjOVS7oGj0svaN33xOEKFs3-WF-KbOcE0xpRk4utri0dyF4MHL0tlf-KAmWJ1KylWdS8kRKLqTm3POSg3nCjwUvg7YwaKitBx1l7ew_DX9H9HRc</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Gagarin, P.G.</creator><creator>Guskov, A.V.</creator><creator>Guskov, V.N.</creator><creator>Tyurin, A.V.</creator><creator>Khoroshilov, A.V.</creator><creator>Gavrichev, K.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210105</creationdate><title>Thermal expansion and heat capacity of thulium orthotantalate</title><author>Gagarin, P.G. ; Guskov, A.V. ; Guskov, V.N. ; Tyurin, A.V. ; Khoroshilov, A.V. ; Gavrichev, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calcination</topic><topic>Chemical analysis</topic><topic>Chemical properties</topic><topic>Enthalpy</topic><topic>Heat</topic><topic>High temperature</topic><topic>Lattice parameters</topic><topic>Mathematical analysis</topic><topic>Monoclinic lattice</topic><topic>Phase transitions</topic><topic>Refractories</topic><topic>Specific heat</topic><topic>Thermal expansion</topic><topic>Thulium</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagarin, P.G.</creatorcontrib><creatorcontrib>Guskov, A.V.</creatorcontrib><creatorcontrib>Guskov, V.N.</creatorcontrib><creatorcontrib>Tyurin, A.V.</creatorcontrib><creatorcontrib>Khoroshilov, A.V.</creatorcontrib><creatorcontrib>Gavrichev, K.S.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagarin, P.G.</au><au>Guskov, A.V.</au><au>Guskov, V.N.</au><au>Tyurin, A.V.</au><au>Khoroshilov, A.V.</au><au>Gavrichev, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal expansion and heat capacity of thulium orthotantalate</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-01-05</date><risdate>2021</risdate><volume>850</volume><spage>156659</spage><pages>156659-</pages><artnum>156659</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined.
[Display omitted]
•M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156659</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2021-01, Vol.850, p.156659, Article 156659 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2461033219 |
source | Access via ScienceDirect (Elsevier) |
subjects | Calcination Chemical analysis Chemical properties Enthalpy Heat High temperature Lattice parameters Mathematical analysis Monoclinic lattice Phase transitions Refractories Specific heat Thermal expansion Thulium X ray powder diffraction |
title | Thermal expansion and heat capacity of thulium orthotantalate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20expansion%20and%20heat%20capacity%20of%20thulium%20orthotantalate&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Gagarin,%20P.G.&rft.date=2021-01-05&rft.volume=850&rft.spage=156659&rft.pages=156659-&rft.artnum=156659&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156659&rft_dat=%3Cproquest_cross%3E2461033219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461033219&rft_id=info:pmid/&rft_els_id=S0925838820330231&rfr_iscdi=true |