Thermal expansion and heat capacity of thulium orthotantalate

Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2021-01, Vol.850, p.156659, Article 156659
Hauptverfasser: Gagarin, P.G., Guskov, A.V., Guskov, V.N., Tyurin, A.V., Khoroshilov, A.V., Gavrichev, K.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 156659
container_title Journal of alloys and compounds
container_volume 850
creator Gagarin, P.G.
Guskov, A.V.
Guskov, V.N.
Tyurin, A.V.
Khoroshilov, A.V.
Gavrichev, K.S.
description Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined. [Display omitted] •M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.
doi_str_mv 10.1016/j.jallcom.2020.156659
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461033219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838820330231</els_id><sourcerecordid>2461033219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</originalsourceid><addsrcrecordid>eNqFkEFLxDAUhIMouK7-BKHguWvSNGlzEJHFVWHBy3oOafpCU9qmJqm4_94u3bungcfMPOZD6J7gDcGEP7abVnWddv0mw9l8Y5wzcYFWpCxomnMuLtEKi4ylJS3La3QTQosxJoKSFXo6NOB71SXwO6ohWDckaqiTBlRMtBqVtvGYOJPEZurs1CfOx8ZFNUTVqQi36MqoLsDdWdfoa_d62L6n-8-3j-3LPtWUFjE1vCLEYKhEVZeiMkKoklcFcJIX1AhMq4JRnRnNDBjONOOaQS40KwjOVS7oGj0svaN33xOEKFs3-WF-KbOcE0xpRk4utri0dyF4MHL0tlf-KAmWJ1KylWdS8kRKLqTm3POSg3nCjwUvg7YwaKitBx1l7ew_DX9H9HRc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461033219</pqid></control><display><type>article</type><title>Thermal expansion and heat capacity of thulium orthotantalate</title><source>Access via ScienceDirect (Elsevier)</source><creator>Gagarin, P.G. ; Guskov, A.V. ; Guskov, V.N. ; Tyurin, A.V. ; Khoroshilov, A.V. ; Gavrichev, K.S.</creator><creatorcontrib>Gagarin, P.G. ; Guskov, A.V. ; Guskov, V.N. ; Tyurin, A.V. ; Khoroshilov, A.V. ; Gavrichev, K.S.</creatorcontrib><description>Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined. [Display omitted] •M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2020.156659</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Calcination ; Chemical analysis ; Chemical properties ; Enthalpy ; Heat ; High temperature ; Lattice parameters ; Mathematical analysis ; Monoclinic lattice ; Phase transitions ; Refractories ; Specific heat ; Thermal expansion ; Thulium ; X ray powder diffraction</subject><ispartof>Journal of alloys and compounds, 2021-01, Vol.850, p.156659, Article 156659</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</citedby><cites>FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2020.156659$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Gagarin, P.G.</creatorcontrib><creatorcontrib>Guskov, A.V.</creatorcontrib><creatorcontrib>Guskov, V.N.</creatorcontrib><creatorcontrib>Tyurin, A.V.</creatorcontrib><creatorcontrib>Khoroshilov, A.V.</creatorcontrib><creatorcontrib>Gavrichev, K.S.</creatorcontrib><title>Thermal expansion and heat capacity of thulium orthotantalate</title><title>Journal of alloys and compounds</title><description>Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined. [Display omitted] •M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.</description><subject>Calcination</subject><subject>Chemical analysis</subject><subject>Chemical properties</subject><subject>Enthalpy</subject><subject>Heat</subject><subject>High temperature</subject><subject>Lattice parameters</subject><subject>Mathematical analysis</subject><subject>Monoclinic lattice</subject><subject>Phase transitions</subject><subject>Refractories</subject><subject>Specific heat</subject><subject>Thermal expansion</subject><subject>Thulium</subject><subject>X ray powder diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLxDAUhIMouK7-BKHguWvSNGlzEJHFVWHBy3oOafpCU9qmJqm4_94u3bungcfMPOZD6J7gDcGEP7abVnWddv0mw9l8Y5wzcYFWpCxomnMuLtEKi4ylJS3La3QTQosxJoKSFXo6NOB71SXwO6ohWDckaqiTBlRMtBqVtvGYOJPEZurs1CfOx8ZFNUTVqQi36MqoLsDdWdfoa_d62L6n-8-3j-3LPtWUFjE1vCLEYKhEVZeiMkKoklcFcJIX1AhMq4JRnRnNDBjONOOaQS40KwjOVS7oGj0svaN33xOEKFs3-WF-KbOcE0xpRk4utri0dyF4MHL0tlf-KAmWJ1KylWdS8kRKLqTm3POSg3nCjwUvg7YwaKitBx1l7ew_DX9H9HRc</recordid><startdate>20210105</startdate><enddate>20210105</enddate><creator>Gagarin, P.G.</creator><creator>Guskov, A.V.</creator><creator>Guskov, V.N.</creator><creator>Tyurin, A.V.</creator><creator>Khoroshilov, A.V.</creator><creator>Gavrichev, K.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20210105</creationdate><title>Thermal expansion and heat capacity of thulium orthotantalate</title><author>Gagarin, P.G. ; Guskov, A.V. ; Guskov, V.N. ; Tyurin, A.V. ; Khoroshilov, A.V. ; Gavrichev, K.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-f6b11f0eb9bd89bf99a86b7e61473f903b753c2fc5fef65c56c5e49c57104a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calcination</topic><topic>Chemical analysis</topic><topic>Chemical properties</topic><topic>Enthalpy</topic><topic>Heat</topic><topic>High temperature</topic><topic>Lattice parameters</topic><topic>Mathematical analysis</topic><topic>Monoclinic lattice</topic><topic>Phase transitions</topic><topic>Refractories</topic><topic>Specific heat</topic><topic>Thermal expansion</topic><topic>Thulium</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagarin, P.G.</creatorcontrib><creatorcontrib>Guskov, A.V.</creatorcontrib><creatorcontrib>Guskov, V.N.</creatorcontrib><creatorcontrib>Tyurin, A.V.</creatorcontrib><creatorcontrib>Khoroshilov, A.V.</creatorcontrib><creatorcontrib>Gavrichev, K.S.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagarin, P.G.</au><au>Guskov, A.V.</au><au>Guskov, V.N.</au><au>Tyurin, A.V.</au><au>Khoroshilov, A.V.</au><au>Gavrichev, K.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal expansion and heat capacity of thulium orthotantalate</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2021-01-05</date><risdate>2021</risdate><volume>850</volume><spage>156659</spage><pages>156659-</pages><artnum>156659</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Monoclinic M′-orthotantalate thulium samples were obtain by co-precipitation and annealing at 1873 K and characterized by X-ray powder diffraction, scanning electron microscopy and chemical analysis. Using the high-temperature X-ray diffraction method, the temperature dependences of the monoclinic lattice parameters were determined at range 298–1273 K and instantaneous βV(i) and relative βV(r) volume expansion coefficients were calculated. The molar heat capacity of M′-TmTaO4 was measured by relaxation (4.1–25.1 K), adiabatic (5.6–348.8 K) and differential scanning (303–1333 K) calorimetry. Standard thermodynamic function (entropy, enthalpy increment and reduced Gibbs energy) were calculated on the smoothed values of molar capacity, without taking into account the contribution of phase transformations occurring below 4 K. The general shape of the anomalous Schottky contribution to the molar heat capacity was determined. [Display omitted] •M‘-TmTaO4 synthesis was carried out by coprecipitation and calcination at 1873 K.•Thermal expansion of M‘-TmTaO4 was measured by HTXRD at 298–1273 K.•Heat capacity of M‘-TmTaO4 was measured by relaxation, adiabatic and differential scanning calorimetry 4–1333 K.•Thermodynamic functions M‘-TmTaO4 were calculated.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2020.156659</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2021-01, Vol.850, p.156659, Article 156659
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2461033219
source Access via ScienceDirect (Elsevier)
subjects Calcination
Chemical analysis
Chemical properties
Enthalpy
Heat
High temperature
Lattice parameters
Mathematical analysis
Monoclinic lattice
Phase transitions
Refractories
Specific heat
Thermal expansion
Thulium
X ray powder diffraction
title Thermal expansion and heat capacity of thulium orthotantalate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20expansion%20and%20heat%20capacity%20of%20thulium%20orthotantalate&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Gagarin,%20P.G.&rft.date=2021-01-05&rft.volume=850&rft.spage=156659&rft.pages=156659-&rft.artnum=156659&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2020.156659&rft_dat=%3Cproquest_cross%3E2461033219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461033219&rft_id=info:pmid/&rft_els_id=S0925838820330231&rfr_iscdi=true