Molar heat capacity of uranium-rich U−Zr−Nb and U−Zr−Mo alloys

•Measurement of molar heat capacity of U−6(Zr+Nb) and U−6(Zr+Mo) alloys using DSC.•Molar heat capacity decreases with addition of 6wt% alloying element (Zr/Nb/Mo).•Replacement of Zr in U−Zr alloy with Nb/Mo reduces molar heat capacity.•Measured molar heat capacities are lower than that estimated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2020-12, Vol.541, p.152427, Article 152427
Hauptverfasser: Kaity, Santu, Banerjee, Joydipta, Parida, S.C., Behere, P.G., Bhasin, Vivek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 152427
container_title Journal of nuclear materials
container_volume 541
creator Kaity, Santu
Banerjee, Joydipta
Parida, S.C.
Behere, P.G.
Bhasin, Vivek
description •Measurement of molar heat capacity of U−6(Zr+Nb) and U−6(Zr+Mo) alloys using DSC.•Molar heat capacity decreases with addition of 6wt% alloying element (Zr/Nb/Mo).•Replacement of Zr in U−Zr alloy with Nb/Mo reduces molar heat capacity.•Measured molar heat capacities are lower than that estimated by Neumann-Kopp rule.•Evaluation of molar enthalpy and entropy increments using molar heat capacity. Uranium-rich U−Zr−Nb and U−Zr−Mo alloys are considered to be good alternative fuel for fast reactors. From that prospective, number of selected uranium rich binary and ternary U−6X (X= Zr + Nb/Mo) alloy samples (i.e., U–6Zr, U−6Nb, U−2Zr−4Nb, U−4Zr−2Mo, U−2Zr−4Mo) with total alloying content of 6 wt% were prepared and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS) and differential thermal analyzer (DTA). Molar heat capacity is considered as one of the most important thermophysical properties of nuclear fuel. The molar heat capacity measurements of U–6Zr, U−2Zr−4Nb, U−6Nb, U−4Zr−2Mo and U−2Zr−4Mo alloys were carried out using differential scanning calorimeter (DSC) in the temperature range of 323−823 K. The U−6Zr alloy is considered here as the reference composition and the effect of Nb or Mo addition on the molar heat capacity data of U−6X alloys has been highlighted. The thermodynamic functions such as molar enthalpy increment Hm0(T)−Hm0(298.15K) and molar entropy increment Sm0(T)−Sm0(298.15K) of the alloy samples have been evaluated using measured molar heat capacity Cp,m0(T) data.
doi_str_mv 10.1016/j.jnucmat.2020.152427
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461031932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311520310357</els_id><sourcerecordid>2461031932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9077358db3b7f9292dbf850a927a7c0fefff4bfbedeaa31913a4510d35e233743</originalsourceid><addsrcrecordid>eNqFkMFKxDAQhoMouK4-glDw3DpJmk17EllcFXb14l68hDRN2JRusyatsG_g2Uf0SczSBY9eZpjh__9hPoSuMWQY8Oy2yZpuUFvZZwRI3DGSE36CJrjgNM0LAqdoAkBISjFm5-gihAYAWAlsghYr10qfbLTsEyV3Utl-nziTDF52dtim3qpNsv75-n73sbxUiezqv3nlEtm2bh8u0ZmRbdBXxz5F68XD2_wpXb4-Ps_vl6milPdpCZxTVtQVrbgpSUnqyhQMZEm45AqMNsbklal0raWkuMRU5gxDTZkmMSCnU3Qz5u68-xh06EXjBt_Fk4LkMwzRQ0lUsVGlvAvBayN23m6l3wsM4oBMNOKITByQiRFZ9N2NPh1f-LTai6Cs7pSurdeqF7Wz_yT8AnNBefA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461031932</pqid></control><display><type>article</type><title>Molar heat capacity of uranium-rich U−Zr−Nb and U−Zr−Mo alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Kaity, Santu ; Banerjee, Joydipta ; Parida, S.C. ; Behere, P.G. ; Bhasin, Vivek</creator><creatorcontrib>Kaity, Santu ; Banerjee, Joydipta ; Parida, S.C. ; Behere, P.G. ; Bhasin, Vivek</creatorcontrib><description>•Measurement of molar heat capacity of U−6(Zr+Nb) and U−6(Zr+Mo) alloys using DSC.•Molar heat capacity decreases with addition of 6wt% alloying element (Zr/Nb/Mo).•Replacement of Zr in U−Zr alloy with Nb/Mo reduces molar heat capacity.•Measured molar heat capacities are lower than that estimated by Neumann-Kopp rule.•Evaluation of molar enthalpy and entropy increments using molar heat capacity. Uranium-rich U−Zr−Nb and U−Zr−Mo alloys are considered to be good alternative fuel for fast reactors. From that prospective, number of selected uranium rich binary and ternary U−6X (X= Zr + Nb/Mo) alloy samples (i.e., U–6Zr, U−6Nb, U−2Zr−4Nb, U−4Zr−2Mo, U−2Zr−4Mo) with total alloying content of 6 wt% were prepared and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS) and differential thermal analyzer (DTA). Molar heat capacity is considered as one of the most important thermophysical properties of nuclear fuel. The molar heat capacity measurements of U–6Zr, U−2Zr−4Nb, U−6Nb, U−4Zr−2Mo and U−2Zr−4Mo alloys were carried out using differential scanning calorimeter (DSC) in the temperature range of 323−823 K. The U−6Zr alloy is considered here as the reference composition and the effect of Nb or Mo addition on the molar heat capacity data of U−6X alloys has been highlighted. The thermodynamic functions such as molar enthalpy increment Hm0(T)−Hm0(298.15K) and molar entropy increment Sm0(T)−Sm0(298.15K) of the alloy samples have been evaluated using measured molar heat capacity Cp,m0(T) data.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2020.152427</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alloys ; Alternative fuels ; Composition effects ; Differential scanning calorimeter ; Differential thermal analysis ; Enthalpy ; Entropy ; Fast nuclear reactors ; Heat ; Molar heat capacity ; Molybdenum ; Niobium ; Nuclear fuels ; Nuclear reactors ; Scanning electron microscopy ; Specific heat ; Thermophysical properties ; Uranium ; U−Zr−Mo alloy ; U−Zr−Nb alloy ; X-ray diffraction ; Zirconium</subject><ispartof>Journal of nuclear materials, 2020-12, Vol.541, p.152427, Article 152427</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Dec 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9077358db3b7f9292dbf850a927a7c0fefff4bfbedeaa31913a4510d35e233743</citedby><cites>FETCH-LOGICAL-c337t-9077358db3b7f9292dbf850a927a7c0fefff4bfbedeaa31913a4510d35e233743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311520310357$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Kaity, Santu</creatorcontrib><creatorcontrib>Banerjee, Joydipta</creatorcontrib><creatorcontrib>Parida, S.C.</creatorcontrib><creatorcontrib>Behere, P.G.</creatorcontrib><creatorcontrib>Bhasin, Vivek</creatorcontrib><title>Molar heat capacity of uranium-rich U−Zr−Nb and U−Zr−Mo alloys</title><title>Journal of nuclear materials</title><description>•Measurement of molar heat capacity of U−6(Zr+Nb) and U−6(Zr+Mo) alloys using DSC.•Molar heat capacity decreases with addition of 6wt% alloying element (Zr/Nb/Mo).•Replacement of Zr in U−Zr alloy with Nb/Mo reduces molar heat capacity.•Measured molar heat capacities are lower than that estimated by Neumann-Kopp rule.•Evaluation of molar enthalpy and entropy increments using molar heat capacity. Uranium-rich U−Zr−Nb and U−Zr−Mo alloys are considered to be good alternative fuel for fast reactors. From that prospective, number of selected uranium rich binary and ternary U−6X (X= Zr + Nb/Mo) alloy samples (i.e., U–6Zr, U−6Nb, U−2Zr−4Nb, U−4Zr−2Mo, U−2Zr−4Mo) with total alloying content of 6 wt% were prepared and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS) and differential thermal analyzer (DTA). Molar heat capacity is considered as one of the most important thermophysical properties of nuclear fuel. The molar heat capacity measurements of U–6Zr, U−2Zr−4Nb, U−6Nb, U−4Zr−2Mo and U−2Zr−4Mo alloys were carried out using differential scanning calorimeter (DSC) in the temperature range of 323−823 K. The U−6Zr alloy is considered here as the reference composition and the effect of Nb or Mo addition on the molar heat capacity data of U−6X alloys has been highlighted. The thermodynamic functions such as molar enthalpy increment Hm0(T)−Hm0(298.15K) and molar entropy increment Sm0(T)−Sm0(298.15K) of the alloy samples have been evaluated using measured molar heat capacity Cp,m0(T) data.</description><subject>Alloys</subject><subject>Alternative fuels</subject><subject>Composition effects</subject><subject>Differential scanning calorimeter</subject><subject>Differential thermal analysis</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Fast nuclear reactors</subject><subject>Heat</subject><subject>Molar heat capacity</subject><subject>Molybdenum</subject><subject>Niobium</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Scanning electron microscopy</subject><subject>Specific heat</subject><subject>Thermophysical properties</subject><subject>Uranium</subject><subject>U−Zr−Mo alloy</subject><subject>U−Zr−Nb alloy</subject><subject>X-ray diffraction</subject><subject>Zirconium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKxDAQhoMouK4-glDw3DpJmk17EllcFXb14l68hDRN2JRusyatsG_g2Uf0SczSBY9eZpjh__9hPoSuMWQY8Oy2yZpuUFvZZwRI3DGSE36CJrjgNM0LAqdoAkBISjFm5-gihAYAWAlsghYr10qfbLTsEyV3Utl-nziTDF52dtim3qpNsv75-n73sbxUiezqv3nlEtm2bh8u0ZmRbdBXxz5F68XD2_wpXb4-Ps_vl6milPdpCZxTVtQVrbgpSUnqyhQMZEm45AqMNsbklal0raWkuMRU5gxDTZkmMSCnU3Qz5u68-xh06EXjBt_Fk4LkMwzRQ0lUsVGlvAvBayN23m6l3wsM4oBMNOKITByQiRFZ9N2NPh1f-LTai6Cs7pSurdeqF7Wz_yT8AnNBefA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Kaity, Santu</creator><creator>Banerjee, Joydipta</creator><creator>Parida, S.C.</creator><creator>Behere, P.G.</creator><creator>Bhasin, Vivek</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20201201</creationdate><title>Molar heat capacity of uranium-rich U−Zr−Nb and U−Zr−Mo alloys</title><author>Kaity, Santu ; Banerjee, Joydipta ; Parida, S.C. ; Behere, P.G. ; Bhasin, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9077358db3b7f9292dbf850a927a7c0fefff4bfbedeaa31913a4510d35e233743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alloys</topic><topic>Alternative fuels</topic><topic>Composition effects</topic><topic>Differential scanning calorimeter</topic><topic>Differential thermal analysis</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Fast nuclear reactors</topic><topic>Heat</topic><topic>Molar heat capacity</topic><topic>Molybdenum</topic><topic>Niobium</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Scanning electron microscopy</topic><topic>Specific heat</topic><topic>Thermophysical properties</topic><topic>Uranium</topic><topic>U−Zr−Mo alloy</topic><topic>U−Zr−Nb alloy</topic><topic>X-ray diffraction</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaity, Santu</creatorcontrib><creatorcontrib>Banerjee, Joydipta</creatorcontrib><creatorcontrib>Parida, S.C.</creatorcontrib><creatorcontrib>Behere, P.G.</creatorcontrib><creatorcontrib>Bhasin, Vivek</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaity, Santu</au><au>Banerjee, Joydipta</au><au>Parida, S.C.</au><au>Behere, P.G.</au><au>Bhasin, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molar heat capacity of uranium-rich U−Zr−Nb and U−Zr−Mo alloys</atitle><jtitle>Journal of nuclear materials</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>541</volume><spage>152427</spage><pages>152427-</pages><artnum>152427</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>•Measurement of molar heat capacity of U−6(Zr+Nb) and U−6(Zr+Mo) alloys using DSC.•Molar heat capacity decreases with addition of 6wt% alloying element (Zr/Nb/Mo).•Replacement of Zr in U−Zr alloy with Nb/Mo reduces molar heat capacity.•Measured molar heat capacities are lower than that estimated by Neumann-Kopp rule.•Evaluation of molar enthalpy and entropy increments using molar heat capacity. Uranium-rich U−Zr−Nb and U−Zr−Mo alloys are considered to be good alternative fuel for fast reactors. From that prospective, number of selected uranium rich binary and ternary U−6X (X= Zr + Nb/Mo) alloy samples (i.e., U–6Zr, U−6Nb, U−2Zr−4Nb, U−4Zr−2Mo, U−2Zr−4Mo) with total alloying content of 6 wt% were prepared and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectroscope (EDS) and differential thermal analyzer (DTA). Molar heat capacity is considered as one of the most important thermophysical properties of nuclear fuel. The molar heat capacity measurements of U–6Zr, U−2Zr−4Nb, U−6Nb, U−4Zr−2Mo and U−2Zr−4Mo alloys were carried out using differential scanning calorimeter (DSC) in the temperature range of 323−823 K. The U−6Zr alloy is considered here as the reference composition and the effect of Nb or Mo addition on the molar heat capacity data of U−6X alloys has been highlighted. The thermodynamic functions such as molar enthalpy increment Hm0(T)−Hm0(298.15K) and molar entropy increment Sm0(T)−Sm0(298.15K) of the alloy samples have been evaluated using measured molar heat capacity Cp,m0(T) data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2020.152427</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2020-12, Vol.541, p.152427, Article 152427
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2461031932
source Elsevier ScienceDirect Journals
subjects Alloys
Alternative fuels
Composition effects
Differential scanning calorimeter
Differential thermal analysis
Enthalpy
Entropy
Fast nuclear reactors
Heat
Molar heat capacity
Molybdenum
Niobium
Nuclear fuels
Nuclear reactors
Scanning electron microscopy
Specific heat
Thermophysical properties
Uranium
U−Zr−Mo alloy
U−Zr−Nb alloy
X-ray diffraction
Zirconium
title Molar heat capacity of uranium-rich U−Zr−Nb and U−Zr−Mo alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molar%20heat%20capacity%20of%20uranium-rich%20U%E2%88%92Zr%E2%88%92Nb%20and%20U%E2%88%92Zr%E2%88%92Mo%20alloys&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Kaity,%20Santu&rft.date=2020-12-01&rft.volume=541&rft.spage=152427&rft.pages=152427-&rft.artnum=152427&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2020.152427&rft_dat=%3Cproquest_cross%3E2461031932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461031932&rft_id=info:pmid/&rft_els_id=S0022311520310357&rfr_iscdi=true