Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells

•Novel and industrially relevant rear surface passivation approach for CIGS ultra-thin solar cells.•Atomic-layer-deposited Al2O3 is used as a passivation layer.•Spin-coated alkali solution is used to create point contacts.•Top-view SEM image of point contacts and supportive EDS analysis is presented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-09, Vol.207, p.1002-1008
Hauptverfasser: Birant, Gizem, de Wild, J., Kohl, T., Buldu, D.G., Brammertz, G., Meuris, M., Poortmans, J., Vermang, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue
container_start_page 1002
container_title Solar energy
container_volume 207
creator Birant, Gizem
de Wild, J.
Kohl, T.
Buldu, D.G.
Brammertz, G.
Meuris, M.
Poortmans, J.
Vermang, B.
description •Novel and industrially relevant rear surface passivation approach for CIGS ultra-thin solar cells.•Atomic-layer-deposited Al2O3 is used as a passivation layer.•Spin-coated alkali solution is used to create point contacts.•Top-view SEM image of point contacts and supportive EDS analysis is presented.•A significant increase in open-circuit voltage is achieved. In this work, an industrially viable and novel rear surface passivation approach for Copper Indium Gallium di-Selenide, Cu(In,Ga)Se2, CIGS, ultra-thin (500 nm) solar cells is developed. The passivation layer was deposited by atomic layer deposition (ALD), and an alkali treatment was applied via spin coating. It was observed that selenization of the samples is required to create contact openings. The openings were visualized by SEM, and these results were supported by EDS. The impact of the oxide layer’s thickness, as well as the alkali solution’s molarity, was studied. Solar cells were produced for the optimal combination of these two parameters. As a result, with a relative 13% increase, the highest Voc of 623 mV was achieved. Hence, the efficiency of the passivated solar cell was relatively increased by one-third, by using an industrially feasible, fast, and repeatable technique.
doi_str_mv 10.1016/j.solener.2020.07.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461031716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20307714</els_id><sourcerecordid>2461031716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-2424ef2a6ba4609940f4e38f843f1f3729947c3336474f5b035bd91c45161c3</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVoIW7Sj1AQ9BJDdqN_u1qfilkaxxDwwT30JrTaEZFRta6kNfW3r4xzz2ngzbw3Mz-EvlFSU0Lbp0OdJg8BYs0IIzWRNeHdDVpQIWlFWSM_oQUpUkVW7Pct-pLSgRAqaScX6LwNYTrp7E6AdRixC-OccnTa-zM-OT34oh-PcdLmDecJWz1EZ3QGvPa7fziCjvioU3IlA0Y8-xx1ld9cwP38sA2PeKOXe2D4od9u9ktcDi0GA96ne_TZap_g63u9Q_vnn7_6l-p1t9n269fK8E7kigkmwDLdDlq0ZLUSxArgne0Et9RyyYokDee8FVLYZiC8GcYVNaKhLTX8Dn2_ppYX_s6QsjpMcwxloWKipYQXDm2Zaq5TJk4pRbDqGN0fHc-KEnVhrA7qnbG6MFZEqgK0-H5cfVAeOLnSTcZBMDC6CCarcXIfJPwHSXmGzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461031716</pqid></control><display><type>article</type><title>Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Birant, Gizem ; de Wild, J. ; Kohl, T. ; Buldu, D.G. ; Brammertz, G. ; Meuris, M. ; Poortmans, J. ; Vermang, B.</creator><creatorcontrib>Birant, Gizem ; de Wild, J. ; Kohl, T. ; Buldu, D.G. ; Brammertz, G. ; Meuris, M. ; Poortmans, J. ; Vermang, B.</creatorcontrib><description>•Novel and industrially relevant rear surface passivation approach for CIGS ultra-thin solar cells.•Atomic-layer-deposited Al2O3 is used as a passivation layer.•Spin-coated alkali solution is used to create point contacts.•Top-view SEM image of point contacts and supportive EDS analysis is presented.•A significant increase in open-circuit voltage is achieved. In this work, an industrially viable and novel rear surface passivation approach for Copper Indium Gallium di-Selenide, Cu(In,Ga)Se2, CIGS, ultra-thin (500 nm) solar cells is developed. The passivation layer was deposited by atomic layer deposition (ALD), and an alkali treatment was applied via spin coating. It was observed that selenization of the samples is required to create contact openings. The openings were visualized by SEM, and these results were supported by EDS. The impact of the oxide layer’s thickness, as well as the alkali solution’s molarity, was studied. Solar cells were produced for the optimal combination of these two parameters. As a result, with a relative 13% increase, the highest Voc of 623 mV was achieved. Hence, the efficiency of the passivated solar cell was relatively increased by one-third, by using an industrially feasible, fast, and repeatable technique.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.07.038</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum oxide ; Atomic layer epitaxy ; Copper ; Copper Indium Gallium Selenide ; Copper indium gallium selenides ; Gallium ; Indium ; Passivity ; Photovoltaic cells ; Selenide ; Solar cells ; Solar energy ; Spin coating ; Surface passivation layer ; Thickness ; Ultra-thin films</subject><ispartof>Solar energy, 2020-09, Vol.207, p.1002-1008</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Sep 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-2424ef2a6ba4609940f4e38f843f1f3729947c3336474f5b035bd91c45161c3</citedby><cites>FETCH-LOGICAL-c384t-2424ef2a6ba4609940f4e38f843f1f3729947c3336474f5b035bd91c45161c3</cites><orcidid>0000-0003-2291-4674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.07.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Birant, Gizem</creatorcontrib><creatorcontrib>de Wild, J.</creatorcontrib><creatorcontrib>Kohl, T.</creatorcontrib><creatorcontrib>Buldu, D.G.</creatorcontrib><creatorcontrib>Brammertz, G.</creatorcontrib><creatorcontrib>Meuris, M.</creatorcontrib><creatorcontrib>Poortmans, J.</creatorcontrib><creatorcontrib>Vermang, B.</creatorcontrib><title>Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells</title><title>Solar energy</title><description>•Novel and industrially relevant rear surface passivation approach for CIGS ultra-thin solar cells.•Atomic-layer-deposited Al2O3 is used as a passivation layer.•Spin-coated alkali solution is used to create point contacts.•Top-view SEM image of point contacts and supportive EDS analysis is presented.•A significant increase in open-circuit voltage is achieved. In this work, an industrially viable and novel rear surface passivation approach for Copper Indium Gallium di-Selenide, Cu(In,Ga)Se2, CIGS, ultra-thin (500 nm) solar cells is developed. The passivation layer was deposited by atomic layer deposition (ALD), and an alkali treatment was applied via spin coating. It was observed that selenization of the samples is required to create contact openings. The openings were visualized by SEM, and these results were supported by EDS. The impact of the oxide layer’s thickness, as well as the alkali solution’s molarity, was studied. Solar cells were produced for the optimal combination of these two parameters. As a result, with a relative 13% increase, the highest Voc of 623 mV was achieved. Hence, the efficiency of the passivated solar cell was relatively increased by one-third, by using an industrially feasible, fast, and repeatable technique.</description><subject>Aluminum oxide</subject><subject>Atomic layer epitaxy</subject><subject>Copper</subject><subject>Copper Indium Gallium Selenide</subject><subject>Copper indium gallium selenides</subject><subject>Gallium</subject><subject>Indium</subject><subject>Passivity</subject><subject>Photovoltaic cells</subject><subject>Selenide</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Spin coating</subject><subject>Surface passivation layer</subject><subject>Thickness</subject><subject>Ultra-thin films</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVoIW7Sj1AQ9BJDdqN_u1qfilkaxxDwwT30JrTaEZFRta6kNfW3r4xzz2ngzbw3Mz-EvlFSU0Lbp0OdJg8BYs0IIzWRNeHdDVpQIWlFWSM_oQUpUkVW7Pct-pLSgRAqaScX6LwNYTrp7E6AdRixC-OccnTa-zM-OT34oh-PcdLmDecJWz1EZ3QGvPa7fziCjvioU3IlA0Y8-xx1ld9cwP38sA2PeKOXe2D4od9u9ktcDi0GA96ne_TZap_g63u9Q_vnn7_6l-p1t9n269fK8E7kigkmwDLdDlq0ZLUSxArgne0Et9RyyYokDee8FVLYZiC8GcYVNaKhLTX8Dn2_ppYX_s6QsjpMcwxloWKipYQXDm2Zaq5TJk4pRbDqGN0fHc-KEnVhrA7qnbG6MFZEqgK0-H5cfVAeOLnSTcZBMDC6CCarcXIfJPwHSXmGzw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Birant, Gizem</creator><creator>de Wild, J.</creator><creator>Kohl, T.</creator><creator>Buldu, D.G.</creator><creator>Brammertz, G.</creator><creator>Meuris, M.</creator><creator>Poortmans, J.</creator><creator>Vermang, B.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2291-4674</orcidid></search><sort><creationdate>20200901</creationdate><title>Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells</title><author>Birant, Gizem ; de Wild, J. ; Kohl, T. ; Buldu, D.G. ; Brammertz, G. ; Meuris, M. ; Poortmans, J. ; Vermang, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-2424ef2a6ba4609940f4e38f843f1f3729947c3336474f5b035bd91c45161c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Atomic layer epitaxy</topic><topic>Copper</topic><topic>Copper Indium Gallium Selenide</topic><topic>Copper indium gallium selenides</topic><topic>Gallium</topic><topic>Indium</topic><topic>Passivity</topic><topic>Photovoltaic cells</topic><topic>Selenide</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Spin coating</topic><topic>Surface passivation layer</topic><topic>Thickness</topic><topic>Ultra-thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birant, Gizem</creatorcontrib><creatorcontrib>de Wild, J.</creatorcontrib><creatorcontrib>Kohl, T.</creatorcontrib><creatorcontrib>Buldu, D.G.</creatorcontrib><creatorcontrib>Brammertz, G.</creatorcontrib><creatorcontrib>Meuris, M.</creatorcontrib><creatorcontrib>Poortmans, J.</creatorcontrib><creatorcontrib>Vermang, B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birant, Gizem</au><au>de Wild, J.</au><au>Kohl, T.</au><au>Buldu, D.G.</au><au>Brammertz, G.</au><au>Meuris, M.</au><au>Poortmans, J.</au><au>Vermang, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells</atitle><jtitle>Solar energy</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>207</volume><spage>1002</spage><epage>1008</epage><pages>1002-1008</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Novel and industrially relevant rear surface passivation approach for CIGS ultra-thin solar cells.•Atomic-layer-deposited Al2O3 is used as a passivation layer.•Spin-coated alkali solution is used to create point contacts.•Top-view SEM image of point contacts and supportive EDS analysis is presented.•A significant increase in open-circuit voltage is achieved. In this work, an industrially viable and novel rear surface passivation approach for Copper Indium Gallium di-Selenide, Cu(In,Ga)Se2, CIGS, ultra-thin (500 nm) solar cells is developed. The passivation layer was deposited by atomic layer deposition (ALD), and an alkali treatment was applied via spin coating. It was observed that selenization of the samples is required to create contact openings. The openings were visualized by SEM, and these results were supported by EDS. The impact of the oxide layer’s thickness, as well as the alkali solution’s molarity, was studied. Solar cells were produced for the optimal combination of these two parameters. As a result, with a relative 13% increase, the highest Voc of 623 mV was achieved. Hence, the efficiency of the passivated solar cell was relatively increased by one-third, by using an industrially feasible, fast, and repeatable technique.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.07.038</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2291-4674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2020-09, Vol.207, p.1002-1008
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2461031716
source Access via ScienceDirect (Elsevier)
subjects Aluminum oxide
Atomic layer epitaxy
Copper
Copper Indium Gallium Selenide
Copper indium gallium selenides
Gallium
Indium
Passivity
Photovoltaic cells
Selenide
Solar cells
Solar energy
Spin coating
Surface passivation layer
Thickness
Ultra-thin films
title Innovative and industrially viable approach to fabricate AlOx rear passivated ultra-thin Cu(In, Ga)Se2 (CIGS) solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovative%20and%20industrially%20viable%20approach%20to%20fabricate%20AlOx%20rear%20passivated%20ultra-thin%20Cu(In,%20Ga)Se2%20(CIGS)%20solar%20cells&rft.jtitle=Solar%20energy&rft.au=Birant,%20Gizem&rft.date=2020-09-01&rft.volume=207&rft.spage=1002&rft.epage=1008&rft.pages=1002-1008&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.07.038&rft_dat=%3Cproquest_cross%3E2461031716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461031716&rft_id=info:pmid/&rft_els_id=S0038092X20307714&rfr_iscdi=true