High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries
•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2020-11, Vol.359, p.136942, Article 136942 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 136942 |
container_title | Electrochimica acta |
container_volume | 359 |
creator | Arias, Analia Natali Villarroel-Rocha, Jhonny Sapag, Karim Mori, María Fernanda Planes, Gabriel Angel Tesio, Alvaro Yamil Flexer, Victoria |
description | •New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content.
We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2020.136942 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461031714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620313359</els_id><sourcerecordid>2461031714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</originalsourceid><addsrcrecordid>eNqFkM9q3DAQxkVJIJs_zxBBz95Klix5e1tC0xRSeknOYizPrrV4JVeSW3LLude8YZ-kym7JNTAwzPD7vmE-Qq45W3LG1afdEke0GUota1aXrVArWX8gC95qUYm2WZ2QBWNcVFK16oycp7RjjGml2YL8uXPbgXqXY9iipzb4jD5TC7ELPn2m30OchjCGrbMwUvA9tQPuD4MdwG8x0d8uDzQ9-Txgcolm3E8YIc8RDzxM01j47IKnztOx0G7e_31-SfO4mSPtIGeMDtMlOd3AmPDqf78gj7dfHm7uqvsfX7_drO8rK6TIlYJVx3XfrFCibnqhZG2buoOuAQUSsFYd523b9Uw1SrSCN70CkBpAc6XbjbggH4--Uww_Z0zZ7MIcfTlpaqk4E1xzWSh9pGwMKUXcmCm6PcQnw5l5Dd7szFvw5jV4cwy-KNdHJZYnfjmMJlmH3mLvYuFNH9y7Hv8ACI2UpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461031714</pqid></control><display><type>article</type><title>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Arias, Analia Natali ; Villarroel-Rocha, Jhonny ; Sapag, Karim ; Mori, María Fernanda ; Planes, Gabriel Angel ; Tesio, Alvaro Yamil ; Flexer, Victoria</creator><creatorcontrib>Arias, Analia Natali ; Villarroel-Rocha, Jhonny ; Sapag, Karim ; Mori, María Fernanda ; Planes, Gabriel Angel ; Tesio, Alvaro Yamil ; Flexer, Victoria</creatorcontrib><description>•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content.
We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.136942</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Chemical synthesis ; Functionalized carbons ; Isotherms ; Lithium sulfur batteries ; Macroporosity ; Melamine ; Micro-mesoporous carbons ; Nitrogen ; Nitrogen-doping ; Ultramicropores</subject><ispartof>Electrochimica acta, 2020-11, Vol.359, p.136942, Article 136942</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Nov 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</citedby><cites>FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</cites><orcidid>0000-0003-2266-1363 ; 0000-0002-4385-8846 ; 0000-0002-4323-3360 ; 0000-0002-5844-2106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620313359$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Arias, Analia Natali</creatorcontrib><creatorcontrib>Villarroel-Rocha, Jhonny</creatorcontrib><creatorcontrib>Sapag, Karim</creatorcontrib><creatorcontrib>Mori, María Fernanda</creatorcontrib><creatorcontrib>Planes, Gabriel Angel</creatorcontrib><creatorcontrib>Tesio, Alvaro Yamil</creatorcontrib><creatorcontrib>Flexer, Victoria</creatorcontrib><title>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</title><title>Electrochimica acta</title><description>•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content.
We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750.
[Display omitted]</description><subject>Adsorption</subject><subject>Chemical synthesis</subject><subject>Functionalized carbons</subject><subject>Isotherms</subject><subject>Lithium sulfur batteries</subject><subject>Macroporosity</subject><subject>Melamine</subject><subject>Micro-mesoporous carbons</subject><subject>Nitrogen</subject><subject>Nitrogen-doping</subject><subject>Ultramicropores</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9q3DAQxkVJIJs_zxBBz95Klix5e1tC0xRSeknOYizPrrV4JVeSW3LLude8YZ-kym7JNTAwzPD7vmE-Qq45W3LG1afdEke0GUota1aXrVArWX8gC95qUYm2WZ2QBWNcVFK16oycp7RjjGml2YL8uXPbgXqXY9iipzb4jD5TC7ELPn2m30OchjCGrbMwUvA9tQPuD4MdwG8x0d8uDzQ9-Txgcolm3E8YIc8RDzxM01j47IKnztOx0G7e_31-SfO4mSPtIGeMDtMlOd3AmPDqf78gj7dfHm7uqvsfX7_drO8rK6TIlYJVx3XfrFCibnqhZG2buoOuAQUSsFYd523b9Uw1SrSCN70CkBpAc6XbjbggH4--Uww_Z0zZ7MIcfTlpaqk4E1xzWSh9pGwMKUXcmCm6PcQnw5l5Dd7szFvw5jV4cwy-KNdHJZYnfjmMJlmH3mLvYuFNH9y7Hv8ACI2UpQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Arias, Analia Natali</creator><creator>Villarroel-Rocha, Jhonny</creator><creator>Sapag, Karim</creator><creator>Mori, María Fernanda</creator><creator>Planes, Gabriel Angel</creator><creator>Tesio, Alvaro Yamil</creator><creator>Flexer, Victoria</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2266-1363</orcidid><orcidid>https://orcid.org/0000-0002-4385-8846</orcidid><orcidid>https://orcid.org/0000-0002-4323-3360</orcidid><orcidid>https://orcid.org/0000-0002-5844-2106</orcidid></search><sort><creationdate>20201101</creationdate><title>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</title><author>Arias, Analia Natali ; Villarroel-Rocha, Jhonny ; Sapag, Karim ; Mori, María Fernanda ; Planes, Gabriel Angel ; Tesio, Alvaro Yamil ; Flexer, Victoria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Chemical synthesis</topic><topic>Functionalized carbons</topic><topic>Isotherms</topic><topic>Lithium sulfur batteries</topic><topic>Macroporosity</topic><topic>Melamine</topic><topic>Micro-mesoporous carbons</topic><topic>Nitrogen</topic><topic>Nitrogen-doping</topic><topic>Ultramicropores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Analia Natali</creatorcontrib><creatorcontrib>Villarroel-Rocha, Jhonny</creatorcontrib><creatorcontrib>Sapag, Karim</creatorcontrib><creatorcontrib>Mori, María Fernanda</creatorcontrib><creatorcontrib>Planes, Gabriel Angel</creatorcontrib><creatorcontrib>Tesio, Alvaro Yamil</creatorcontrib><creatorcontrib>Flexer, Victoria</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Analia Natali</au><au>Villarroel-Rocha, Jhonny</au><au>Sapag, Karim</au><au>Mori, María Fernanda</au><au>Planes, Gabriel Angel</au><au>Tesio, Alvaro Yamil</au><au>Flexer, Victoria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>359</volume><spage>136942</spage><pages>136942-</pages><artnum>136942</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content.
We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.136942</doi><orcidid>https://orcid.org/0000-0003-2266-1363</orcidid><orcidid>https://orcid.org/0000-0002-4385-8846</orcidid><orcidid>https://orcid.org/0000-0002-4323-3360</orcidid><orcidid>https://orcid.org/0000-0002-5844-2106</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2020-11, Vol.359, p.136942, Article 136942 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2461031714 |
source | Elsevier ScienceDirect Journals |
subjects | Adsorption Chemical synthesis Functionalized carbons Isotherms Lithium sulfur batteries Macroporosity Melamine Micro-mesoporous carbons Nitrogen Nitrogen-doping Ultramicropores |
title | High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20nitrogen%20content%20carbons:%20Morphological%20and%20chemical%20changes%20with%20synthesis%20temperature%20and%20application%20in%20lithium%E2%80%93sulfur%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Arias,%20Analia%20Natali&rft.date=2020-11-01&rft.volume=359&rft.spage=136942&rft.pages=136942-&rft.artnum=136942&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.136942&rft_dat=%3Cproquest_cross%3E2461031714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461031714&rft_id=info:pmid/&rft_els_id=S0013468620313359&rfr_iscdi=true |