High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries

•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-11, Vol.359, p.136942, Article 136942
Hauptverfasser: Arias, Analia Natali, Villarroel-Rocha, Jhonny, Sapag, Karim, Mori, María Fernanda, Planes, Gabriel Angel, Tesio, Alvaro Yamil, Flexer, Victoria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 136942
container_title Electrochimica acta
container_volume 359
creator Arias, Analia Natali
Villarroel-Rocha, Jhonny
Sapag, Karim
Mori, María Fernanda
Planes, Gabriel Angel
Tesio, Alvaro Yamil
Flexer, Victoria
description •New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content. We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750. [Display omitted]
doi_str_mv 10.1016/j.electacta.2020.136942
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2461031714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468620313359</els_id><sourcerecordid>2461031714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</originalsourceid><addsrcrecordid>eNqFkM9q3DAQxkVJIJs_zxBBz95Klix5e1tC0xRSeknOYizPrrV4JVeSW3LLude8YZ-kym7JNTAwzPD7vmE-Qq45W3LG1afdEke0GUota1aXrVArWX8gC95qUYm2WZ2QBWNcVFK16oycp7RjjGml2YL8uXPbgXqXY9iipzb4jD5TC7ELPn2m30OchjCGrbMwUvA9tQPuD4MdwG8x0d8uDzQ9-Txgcolm3E8YIc8RDzxM01j47IKnztOx0G7e_31-SfO4mSPtIGeMDtMlOd3AmPDqf78gj7dfHm7uqvsfX7_drO8rK6TIlYJVx3XfrFCibnqhZG2buoOuAQUSsFYd523b9Uw1SrSCN70CkBpAc6XbjbggH4--Uww_Z0zZ7MIcfTlpaqk4E1xzWSh9pGwMKUXcmCm6PcQnw5l5Dd7szFvw5jV4cwy-KNdHJZYnfjmMJlmH3mLvYuFNH9y7Hv8ACI2UpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461031714</pqid></control><display><type>article</type><title>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Arias, Analia Natali ; Villarroel-Rocha, Jhonny ; Sapag, Karim ; Mori, María Fernanda ; Planes, Gabriel Angel ; Tesio, Alvaro Yamil ; Flexer, Victoria</creator><creatorcontrib>Arias, Analia Natali ; Villarroel-Rocha, Jhonny ; Sapag, Karim ; Mori, María Fernanda ; Planes, Gabriel Angel ; Tesio, Alvaro Yamil ; Flexer, Victoria</creatorcontrib><description>•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content. We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2020.136942</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adsorption ; Chemical synthesis ; Functionalized carbons ; Isotherms ; Lithium sulfur batteries ; Macroporosity ; Melamine ; Micro-mesoporous carbons ; Nitrogen ; Nitrogen-doping ; Ultramicropores</subject><ispartof>Electrochimica acta, 2020-11, Vol.359, p.136942, Article 136942</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Nov 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</citedby><cites>FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</cites><orcidid>0000-0003-2266-1363 ; 0000-0002-4385-8846 ; 0000-0002-4323-3360 ; 0000-0002-5844-2106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468620313359$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Arias, Analia Natali</creatorcontrib><creatorcontrib>Villarroel-Rocha, Jhonny</creatorcontrib><creatorcontrib>Sapag, Karim</creatorcontrib><creatorcontrib>Mori, María Fernanda</creatorcontrib><creatorcontrib>Planes, Gabriel Angel</creatorcontrib><creatorcontrib>Tesio, Alvaro Yamil</creatorcontrib><creatorcontrib>Flexer, Victoria</creatorcontrib><title>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</title><title>Electrochimica acta</title><description>•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content. We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750. [Display omitted]</description><subject>Adsorption</subject><subject>Chemical synthesis</subject><subject>Functionalized carbons</subject><subject>Isotherms</subject><subject>Lithium sulfur batteries</subject><subject>Macroporosity</subject><subject>Melamine</subject><subject>Micro-mesoporous carbons</subject><subject>Nitrogen</subject><subject>Nitrogen-doping</subject><subject>Ultramicropores</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM9q3DAQxkVJIJs_zxBBz95Klix5e1tC0xRSeknOYizPrrV4JVeSW3LLude8YZ-kym7JNTAwzPD7vmE-Qq45W3LG1afdEke0GUota1aXrVArWX8gC95qUYm2WZ2QBWNcVFK16oycp7RjjGml2YL8uXPbgXqXY9iipzb4jD5TC7ELPn2m30OchjCGrbMwUvA9tQPuD4MdwG8x0d8uDzQ9-Txgcolm3E8YIc8RDzxM01j47IKnztOx0G7e_31-SfO4mSPtIGeMDtMlOd3AmPDqf78gj7dfHm7uqvsfX7_drO8rK6TIlYJVx3XfrFCibnqhZG2buoOuAQUSsFYd523b9Uw1SrSCN70CkBpAc6XbjbggH4--Uww_Z0zZ7MIcfTlpaqk4E1xzWSh9pGwMKUXcmCm6PcQnw5l5Dd7szFvw5jV4cwy-KNdHJZYnfjmMJlmH3mLvYuFNH9y7Hv8ACI2UpQ</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Arias, Analia Natali</creator><creator>Villarroel-Rocha, Jhonny</creator><creator>Sapag, Karim</creator><creator>Mori, María Fernanda</creator><creator>Planes, Gabriel Angel</creator><creator>Tesio, Alvaro Yamil</creator><creator>Flexer, Victoria</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2266-1363</orcidid><orcidid>https://orcid.org/0000-0002-4385-8846</orcidid><orcidid>https://orcid.org/0000-0002-4323-3360</orcidid><orcidid>https://orcid.org/0000-0002-5844-2106</orcidid></search><sort><creationdate>20201101</creationdate><title>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</title><author>Arias, Analia Natali ; Villarroel-Rocha, Jhonny ; Sapag, Karim ; Mori, María Fernanda ; Planes, Gabriel Angel ; Tesio, Alvaro Yamil ; Flexer, Victoria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-6a9b17d59e4e75d3642c52bab5a6a4ae26b1188bd065638315d6aa47aa71678f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Chemical synthesis</topic><topic>Functionalized carbons</topic><topic>Isotherms</topic><topic>Lithium sulfur batteries</topic><topic>Macroporosity</topic><topic>Melamine</topic><topic>Micro-mesoporous carbons</topic><topic>Nitrogen</topic><topic>Nitrogen-doping</topic><topic>Ultramicropores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arias, Analia Natali</creatorcontrib><creatorcontrib>Villarroel-Rocha, Jhonny</creatorcontrib><creatorcontrib>Sapag, Karim</creatorcontrib><creatorcontrib>Mori, María Fernanda</creatorcontrib><creatorcontrib>Planes, Gabriel Angel</creatorcontrib><creatorcontrib>Tesio, Alvaro Yamil</creatorcontrib><creatorcontrib>Flexer, Victoria</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias, Analia Natali</au><au>Villarroel-Rocha, Jhonny</au><au>Sapag, Karim</au><au>Mori, María Fernanda</au><au>Planes, Gabriel Angel</au><au>Tesio, Alvaro Yamil</au><au>Flexer, Victoria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>359</volume><spage>136942</spage><pages>136942-</pages><artnum>136942</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•New synthesis of carbons from reticulation of resorcinol-formaldehyde-melamine and pyrolysis.•Monoliths with hierarchical porous structures: micropores, mesopores and macropores.•High nitrogen content decreasing with pyrolysis temperature: 32.9% at 600 °C, down to 10.3% at 900 °C.•Carbons tested as host materials in cathodes for lithium–sulfur batteries.•Capacity increases with pyrolysis T. Cycling stability is maximum at high N content. We present a new two-step synthesis method to prepare nitrogen-doped carbons with micro, meso and macroporosity. We modified the classical polycondensation of resorcinol–formaldehyde, by adding a large excess of melamine in basic medium. A series of materials were prepared by varying the maximum carbonization temperature in the range 600–900 °C, and are denoted NCC-X, where X denotes that maximum temperature. NCC-X showed a high nitrogen content, ranging from 32.9% to 10.3%. Scanning electron microscopy showed macropores in the order of 100–600 nm, with sizes decreasing with temperature, reaching a minimum for NCC-800, and then increasing again. N2 adsorption–desorption isotherms showed the presence of micro and mesopores for all samples, with a maximum surface area of 505 m2 g−1 for NCC-800. CO2 adsorption isotherms showed that all NCC-X materials present ultramicropores. NCC-X were incorporated as host materials for elemental sulfur in lithium–sulfur batteries. The increased narrow micropore volume of materials pyrolysed at higher temperature seems to promote an initial higher cell capacity. Conversely, the much higher N content and the higher amount of N in pyridinic environments were identified as the reasons for the higher cycling stability of the cells prepared with NCC-600-7h and NCC-750. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2020.136942</doi><orcidid>https://orcid.org/0000-0003-2266-1363</orcidid><orcidid>https://orcid.org/0000-0002-4385-8846</orcidid><orcidid>https://orcid.org/0000-0002-4323-3360</orcidid><orcidid>https://orcid.org/0000-0002-5844-2106</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2020-11, Vol.359, p.136942, Article 136942
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2461031714
source Elsevier ScienceDirect Journals
subjects Adsorption
Chemical synthesis
Functionalized carbons
Isotherms
Lithium sulfur batteries
Macroporosity
Melamine
Micro-mesoporous carbons
Nitrogen
Nitrogen-doping
Ultramicropores
title High nitrogen content carbons: Morphological and chemical changes with synthesis temperature and application in lithium–sulfur batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20nitrogen%20content%20carbons:%20Morphological%20and%20chemical%20changes%20with%20synthesis%20temperature%20and%20application%20in%20lithium%E2%80%93sulfur%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Arias,%20Analia%20Natali&rft.date=2020-11-01&rft.volume=359&rft.spage=136942&rft.pages=136942-&rft.artnum=136942&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2020.136942&rft_dat=%3Cproquest_cross%3E2461031714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461031714&rft_id=info:pmid/&rft_els_id=S0013468620313359&rfr_iscdi=true