A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi

We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-11, Vol.903 (2), p.132
Hauptverfasser: Horesh, Assaf, Sfaradi, Itai, Ergon, Mattias, Barbarino, Cristina, Sollerman, Jesper, Moldon, Javier, Dobie, Dougal, Schulze, Steve, Pérez-Torres, Miguel, Williams, David R. A., Fremling, Christoffer, Gal-Yam, Avishay, Kulkarni, Shrinivas R., O’Brien, Andrew, Lundqvist, Peter, Murphy, Tara, Fender, Rob, Anand, Shreya, Belicki, Justin, Bellm, Eric C., Coughlin, Michael W., De, Kishalay, Golkhou, V. Zach, Graham, Matthew J., Green, Dave A., Hankins, Matt, Kasliwal, Mansi, Kupfer, Thomas, Laher, Russ R., Masci, Frank J., Miller, A. A., Neill, James D., Ofek, Eran O., Perrott, Yvette, Porter, Michael, Reiley, Daniel J., Rigault, Mickael, Rodriguez, Hector, Rusholme, Ben, Shupe, David L., Titterington, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 132
container_title The Astrophysical journal
container_volume 903
creator Horesh, Assaf
Sfaradi, Itai
Ergon, Mattias
Barbarino, Cristina
Sollerman, Jesper
Moldon, Javier
Dobie, Dougal
Schulze, Steve
Pérez-Torres, Miguel
Williams, David R. A.
Fremling, Christoffer
Gal-Yam, Avishay
Kulkarni, Shrinivas R.
O’Brien, Andrew
Lundqvist, Peter
Murphy, Tara
Fender, Rob
Anand, Shreya
Belicki, Justin
Bellm, Eric C.
Coughlin, Michael W.
De, Kishalay
Golkhou, V. Zach
Graham, Matthew J.
Green, Dave A.
Hankins, Matt
Kasliwal, Mansi
Kupfer, Thomas
Laher, Russ R.
Masci, Frank J.
Miller, A. A.
Neill, James D.
Ofek, Eran O.
Perrott, Yvette
Porter, Michael
Reiley, Daniel J.
Rigault, Mickael
Rodriguez, Hector
Rusholme, Ben
Shupe, David L.
Titterington, David
description We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source ( L ν ≈ 1.2 × 10 27 erg s − 1 Hz − 1 ). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of ϵ e / ϵ B  ≳  200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at ∼ 3 × 10 4 km s − 1 . Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is M ̇ ≈ 1.4 × 10 − 4 M ⊙ yr − 1 for an assumed wind velocity of 1000 km s − 1 . The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r −2 .
doi_str_mv 10.3847/1538-4357/abbd38
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2461028316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461028316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-e78c3b58729ffeca0f2a18460e4a30130820a7b2978a15ffd89fa22dfa2bed0a3</originalsourceid><addsrcrecordid>eNp1kc1P5DAMxaMVSDvA3jlG2tNKW3CSdpIeR8OnNIIDsHAictsUwnaSkrSD-O9pVQTiwMWWn356tvUI2WdwIFQqD1kmVJKKTB5iUVRC_SCzD2mLzAAgTeZC3v0kOzE-jSPP8xm5X9AL7xLz3NsWQ2c76x29evTlf3qLG0Ovw1Ab6x6odRTpkXHR0KUNZb-OnWkaDPTYbWzwbm1cRzH43lX06oJy4ODtHtmusYnm13vfJTcnx9fLs2R1eXq-XKySMlWyS4xUpSgyJXle16ZEqDkylc7BpCiACVAcUBY8lwpZVteVymvkvBpKYSpAsUv-Tr7xxbR9odtg1xhetUerj-y_hfbhQcdeM6WYkgP-Z8IfsfnCni1WetRg2MogyzdsYH9PbBv8c29ip598H9zwjebpnAFXgs0HCiaqDD7GYOoPWwZ6DEiPaegxDT0F9Hmz9e2n57f4G0PlkMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461028316</pqid></control><display><type>article</type><title>A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi</title><source>IOP Publishing Free Content</source><creator>Horesh, Assaf ; Sfaradi, Itai ; Ergon, Mattias ; Barbarino, Cristina ; Sollerman, Jesper ; Moldon, Javier ; Dobie, Dougal ; Schulze, Steve ; Pérez-Torres, Miguel ; Williams, David R. A. ; Fremling, Christoffer ; Gal-Yam, Avishay ; Kulkarni, Shrinivas R. ; O’Brien, Andrew ; Lundqvist, Peter ; Murphy, Tara ; Fender, Rob ; Anand, Shreya ; Belicki, Justin ; Bellm, Eric C. ; Coughlin, Michael W. ; De, Kishalay ; Golkhou, V. Zach ; Graham, Matthew J. ; Green, Dave A. ; Hankins, Matt ; Kasliwal, Mansi ; Kupfer, Thomas ; Laher, Russ R. ; Masci, Frank J. ; Miller, A. A. ; Neill, James D. ; Ofek, Eran O. ; Perrott, Yvette ; Porter, Michael ; Reiley, Daniel J. ; Rigault, Mickael ; Rodriguez, Hector ; Rusholme, Ben ; Shupe, David L. ; Titterington, David</creator><creatorcontrib>Horesh, Assaf ; Sfaradi, Itai ; Ergon, Mattias ; Barbarino, Cristina ; Sollerman, Jesper ; Moldon, Javier ; Dobie, Dougal ; Schulze, Steve ; Pérez-Torres, Miguel ; Williams, David R. A. ; Fremling, Christoffer ; Gal-Yam, Avishay ; Kulkarni, Shrinivas R. ; O’Brien, Andrew ; Lundqvist, Peter ; Murphy, Tara ; Fender, Rob ; Anand, Shreya ; Belicki, Justin ; Bellm, Eric C. ; Coughlin, Michael W. ; De, Kishalay ; Golkhou, V. Zach ; Graham, Matthew J. ; Green, Dave A. ; Hankins, Matt ; Kasliwal, Mansi ; Kupfer, Thomas ; Laher, Russ R. ; Masci, Frank J. ; Miller, A. A. ; Neill, James D. ; Ofek, Eran O. ; Perrott, Yvette ; Porter, Michael ; Reiley, Daniel J. ; Rigault, Mickael ; Rodriguez, Hector ; Rusholme, Ben ; Shupe, David L. ; Titterington, David</creatorcontrib><description>We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source ( L ν ≈ 1.2 × 10 27 erg s − 1 Hz − 1 ). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of ϵ e / ϵ B  ≳  200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at ∼ 3 × 10 4 km s − 1 . Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is M ̇ ≈ 1.4 × 10 − 4 M ⊙ yr − 1 for an assumed wind velocity of 1000 km s − 1 . The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r −2 .</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abbd38</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Cooling ; Core-collapse supernovae ; Ejecta ; Emission analysis ; Galaxies ; Optical observation ; Physics ; Radio astronomy ; Radio emission ; Radio observation ; Radio observatories ; Radio transient sources ; Shock waves ; Spiral galaxies ; Stellar envelopes ; Stellar winds ; Supernova ; Supernovae ; Transient sources ; Type Ic supernovae ; Wavelengths ; Wind speed ; Wind velocities ; X-ray transient sources</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.132</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-e78c3b58729ffeca0f2a18460e4a30130820a7b2978a15ffd89fa22dfa2bed0a3</citedby><cites>FETCH-LOGICAL-c487t-e78c3b58729ffeca0f2a18460e4a30130820a7b2978a15ffd89fa22dfa2bed0a3</cites><orcidid>0000-0003-4609-2791 ; 0000-0002-0466-1119 ; 0000-0002-6786-8774 ; 0000-0001-9515-478X ; 0000-0003-4401-0430 ; 0000-0001-5654-0266 ; 0000-0002-5936-1156 ; 0000-0002-3821-6144 ; 0000-0002-3168-0139 ; 0000-0002-8532-9395 ; 0000-0002-6255-8240 ; 0000-0001-7361-0246 ; 0000-0002-2686-438X ; 0000-0002-8121-2560 ; 0000-0002-3653-5598 ; 0000-0002-8262-2924 ; 0000-0003-0699-7019 ; 0000-0001-7648-4142 ; 0000-0002-4223-103X ; 0000-0002-3664-8082 ; 0000-0003-0466-3779 ; 0000-0001-5390-8563 ; 0000-0002-6540-1484 ; 0000-0001-8018-5348 ; 0000-0002-8079-7608 ; 0000-0003-1431-920X ; 0000-0003-2451-5482 ; 0000-0003-3189-9998 ; 0000-0001-6797-1889 ; 0000-0001-8205-2506 ; 0000-0003-1546-6615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbd38/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abbd38$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-03011059$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188187$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Horesh, Assaf</creatorcontrib><creatorcontrib>Sfaradi, Itai</creatorcontrib><creatorcontrib>Ergon, Mattias</creatorcontrib><creatorcontrib>Barbarino, Cristina</creatorcontrib><creatorcontrib>Sollerman, Jesper</creatorcontrib><creatorcontrib>Moldon, Javier</creatorcontrib><creatorcontrib>Dobie, Dougal</creatorcontrib><creatorcontrib>Schulze, Steve</creatorcontrib><creatorcontrib>Pérez-Torres, Miguel</creatorcontrib><creatorcontrib>Williams, David R. A.</creatorcontrib><creatorcontrib>Fremling, Christoffer</creatorcontrib><creatorcontrib>Gal-Yam, Avishay</creatorcontrib><creatorcontrib>Kulkarni, Shrinivas R.</creatorcontrib><creatorcontrib>O’Brien, Andrew</creatorcontrib><creatorcontrib>Lundqvist, Peter</creatorcontrib><creatorcontrib>Murphy, Tara</creatorcontrib><creatorcontrib>Fender, Rob</creatorcontrib><creatorcontrib>Anand, Shreya</creatorcontrib><creatorcontrib>Belicki, Justin</creatorcontrib><creatorcontrib>Bellm, Eric C.</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>De, Kishalay</creatorcontrib><creatorcontrib>Golkhou, V. Zach</creatorcontrib><creatorcontrib>Graham, Matthew J.</creatorcontrib><creatorcontrib>Green, Dave A.</creatorcontrib><creatorcontrib>Hankins, Matt</creatorcontrib><creatorcontrib>Kasliwal, Mansi</creatorcontrib><creatorcontrib>Kupfer, Thomas</creatorcontrib><creatorcontrib>Laher, Russ R.</creatorcontrib><creatorcontrib>Masci, Frank J.</creatorcontrib><creatorcontrib>Miller, A. A.</creatorcontrib><creatorcontrib>Neill, James D.</creatorcontrib><creatorcontrib>Ofek, Eran O.</creatorcontrib><creatorcontrib>Perrott, Yvette</creatorcontrib><creatorcontrib>Porter, Michael</creatorcontrib><creatorcontrib>Reiley, Daniel J.</creatorcontrib><creatorcontrib>Rigault, Mickael</creatorcontrib><creatorcontrib>Rodriguez, Hector</creatorcontrib><creatorcontrib>Rusholme, Ben</creatorcontrib><creatorcontrib>Shupe, David L.</creatorcontrib><creatorcontrib>Titterington, David</creatorcontrib><title>A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source ( L ν ≈ 1.2 × 10 27 erg s − 1 Hz − 1 ). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of ϵ e / ϵ B  ≳  200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at ∼ 3 × 10 4 km s − 1 . Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is M ̇ ≈ 1.4 × 10 − 4 M ⊙ yr − 1 for an assumed wind velocity of 1000 km s − 1 . The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r −2 .</description><subject>Astrophysics</subject><subject>Cooling</subject><subject>Core-collapse supernovae</subject><subject>Ejecta</subject><subject>Emission analysis</subject><subject>Galaxies</subject><subject>Optical observation</subject><subject>Physics</subject><subject>Radio astronomy</subject><subject>Radio emission</subject><subject>Radio observation</subject><subject>Radio observatories</subject><subject>Radio transient sources</subject><subject>Shock waves</subject><subject>Spiral galaxies</subject><subject>Stellar envelopes</subject><subject>Stellar winds</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Transient sources</subject><subject>Type Ic supernovae</subject><subject>Wavelengths</subject><subject>Wind speed</subject><subject>Wind velocities</subject><subject>X-ray transient sources</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1P5DAMxaMVSDvA3jlG2tNKW3CSdpIeR8OnNIIDsHAictsUwnaSkrSD-O9pVQTiwMWWn356tvUI2WdwIFQqD1kmVJKKTB5iUVRC_SCzD2mLzAAgTeZC3v0kOzE-jSPP8xm5X9AL7xLz3NsWQ2c76x29evTlf3qLG0Ovw1Ab6x6odRTpkXHR0KUNZb-OnWkaDPTYbWzwbm1cRzH43lX06oJy4ODtHtmusYnm13vfJTcnx9fLs2R1eXq-XKySMlWyS4xUpSgyJXle16ZEqDkylc7BpCiACVAcUBY8lwpZVteVymvkvBpKYSpAsUv-Tr7xxbR9odtg1xhetUerj-y_hfbhQcdeM6WYkgP-Z8IfsfnCni1WetRg2MogyzdsYH9PbBv8c29ip598H9zwjebpnAFXgs0HCiaqDD7GYOoPWwZ6DEiPaegxDT0F9Hmz9e2n57f4G0PlkMo</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Horesh, Assaf</creator><creator>Sfaradi, Itai</creator><creator>Ergon, Mattias</creator><creator>Barbarino, Cristina</creator><creator>Sollerman, Jesper</creator><creator>Moldon, Javier</creator><creator>Dobie, Dougal</creator><creator>Schulze, Steve</creator><creator>Pérez-Torres, Miguel</creator><creator>Williams, David R. A.</creator><creator>Fremling, Christoffer</creator><creator>Gal-Yam, Avishay</creator><creator>Kulkarni, Shrinivas R.</creator><creator>O’Brien, Andrew</creator><creator>Lundqvist, Peter</creator><creator>Murphy, Tara</creator><creator>Fender, Rob</creator><creator>Anand, Shreya</creator><creator>Belicki, Justin</creator><creator>Bellm, Eric C.</creator><creator>Coughlin, Michael W.</creator><creator>De, Kishalay</creator><creator>Golkhou, V. Zach</creator><creator>Graham, Matthew J.</creator><creator>Green, Dave A.</creator><creator>Hankins, Matt</creator><creator>Kasliwal, Mansi</creator><creator>Kupfer, Thomas</creator><creator>Laher, Russ R.</creator><creator>Masci, Frank J.</creator><creator>Miller, A. A.</creator><creator>Neill, James D.</creator><creator>Ofek, Eran O.</creator><creator>Perrott, Yvette</creator><creator>Porter, Michael</creator><creator>Reiley, Daniel J.</creator><creator>Rigault, Mickael</creator><creator>Rodriguez, Hector</creator><creator>Rusholme, Ben</creator><creator>Shupe, David L.</creator><creator>Titterington, David</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0003-4609-2791</orcidid><orcidid>https://orcid.org/0000-0002-0466-1119</orcidid><orcidid>https://orcid.org/0000-0002-6786-8774</orcidid><orcidid>https://orcid.org/0000-0001-9515-478X</orcidid><orcidid>https://orcid.org/0000-0003-4401-0430</orcidid><orcidid>https://orcid.org/0000-0001-5654-0266</orcidid><orcidid>https://orcid.org/0000-0002-5936-1156</orcidid><orcidid>https://orcid.org/0000-0002-3821-6144</orcidid><orcidid>https://orcid.org/0000-0002-3168-0139</orcidid><orcidid>https://orcid.org/0000-0002-8532-9395</orcidid><orcidid>https://orcid.org/0000-0002-6255-8240</orcidid><orcidid>https://orcid.org/0000-0001-7361-0246</orcidid><orcidid>https://orcid.org/0000-0002-2686-438X</orcidid><orcidid>https://orcid.org/0000-0002-8121-2560</orcidid><orcidid>https://orcid.org/0000-0002-3653-5598</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0003-0699-7019</orcidid><orcidid>https://orcid.org/0000-0001-7648-4142</orcidid><orcidid>https://orcid.org/0000-0002-4223-103X</orcidid><orcidid>https://orcid.org/0000-0002-3664-8082</orcidid><orcidid>https://orcid.org/0000-0003-0466-3779</orcidid><orcidid>https://orcid.org/0000-0001-5390-8563</orcidid><orcidid>https://orcid.org/0000-0002-6540-1484</orcidid><orcidid>https://orcid.org/0000-0001-8018-5348</orcidid><orcidid>https://orcid.org/0000-0002-8079-7608</orcidid><orcidid>https://orcid.org/0000-0003-1431-920X</orcidid><orcidid>https://orcid.org/0000-0003-2451-5482</orcidid><orcidid>https://orcid.org/0000-0003-3189-9998</orcidid><orcidid>https://orcid.org/0000-0001-6797-1889</orcidid><orcidid>https://orcid.org/0000-0001-8205-2506</orcidid><orcidid>https://orcid.org/0000-0003-1546-6615</orcidid></search><sort><creationdate>20201101</creationdate><title>A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi</title><author>Horesh, Assaf ; Sfaradi, Itai ; Ergon, Mattias ; Barbarino, Cristina ; Sollerman, Jesper ; Moldon, Javier ; Dobie, Dougal ; Schulze, Steve ; Pérez-Torres, Miguel ; Williams, David R. A. ; Fremling, Christoffer ; Gal-Yam, Avishay ; Kulkarni, Shrinivas R. ; O’Brien, Andrew ; Lundqvist, Peter ; Murphy, Tara ; Fender, Rob ; Anand, Shreya ; Belicki, Justin ; Bellm, Eric C. ; Coughlin, Michael W. ; De, Kishalay ; Golkhou, V. Zach ; Graham, Matthew J. ; Green, Dave A. ; Hankins, Matt ; Kasliwal, Mansi ; Kupfer, Thomas ; Laher, Russ R. ; Masci, Frank J. ; Miller, A. A. ; Neill, James D. ; Ofek, Eran O. ; Perrott, Yvette ; Porter, Michael ; Reiley, Daniel J. ; Rigault, Mickael ; Rodriguez, Hector ; Rusholme, Ben ; Shupe, David L. ; Titterington, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-e78c3b58729ffeca0f2a18460e4a30130820a7b2978a15ffd89fa22dfa2bed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astrophysics</topic><topic>Cooling</topic><topic>Core-collapse supernovae</topic><topic>Ejecta</topic><topic>Emission analysis</topic><topic>Galaxies</topic><topic>Optical observation</topic><topic>Physics</topic><topic>Radio astronomy</topic><topic>Radio emission</topic><topic>Radio observation</topic><topic>Radio observatories</topic><topic>Radio transient sources</topic><topic>Shock waves</topic><topic>Spiral galaxies</topic><topic>Stellar envelopes</topic><topic>Stellar winds</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Transient sources</topic><topic>Type Ic supernovae</topic><topic>Wavelengths</topic><topic>Wind speed</topic><topic>Wind velocities</topic><topic>X-ray transient sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horesh, Assaf</creatorcontrib><creatorcontrib>Sfaradi, Itai</creatorcontrib><creatorcontrib>Ergon, Mattias</creatorcontrib><creatorcontrib>Barbarino, Cristina</creatorcontrib><creatorcontrib>Sollerman, Jesper</creatorcontrib><creatorcontrib>Moldon, Javier</creatorcontrib><creatorcontrib>Dobie, Dougal</creatorcontrib><creatorcontrib>Schulze, Steve</creatorcontrib><creatorcontrib>Pérez-Torres, Miguel</creatorcontrib><creatorcontrib>Williams, David R. A.</creatorcontrib><creatorcontrib>Fremling, Christoffer</creatorcontrib><creatorcontrib>Gal-Yam, Avishay</creatorcontrib><creatorcontrib>Kulkarni, Shrinivas R.</creatorcontrib><creatorcontrib>O’Brien, Andrew</creatorcontrib><creatorcontrib>Lundqvist, Peter</creatorcontrib><creatorcontrib>Murphy, Tara</creatorcontrib><creatorcontrib>Fender, Rob</creatorcontrib><creatorcontrib>Anand, Shreya</creatorcontrib><creatorcontrib>Belicki, Justin</creatorcontrib><creatorcontrib>Bellm, Eric C.</creatorcontrib><creatorcontrib>Coughlin, Michael W.</creatorcontrib><creatorcontrib>De, Kishalay</creatorcontrib><creatorcontrib>Golkhou, V. Zach</creatorcontrib><creatorcontrib>Graham, Matthew J.</creatorcontrib><creatorcontrib>Green, Dave A.</creatorcontrib><creatorcontrib>Hankins, Matt</creatorcontrib><creatorcontrib>Kasliwal, Mansi</creatorcontrib><creatorcontrib>Kupfer, Thomas</creatorcontrib><creatorcontrib>Laher, Russ R.</creatorcontrib><creatorcontrib>Masci, Frank J.</creatorcontrib><creatorcontrib>Miller, A. A.</creatorcontrib><creatorcontrib>Neill, James D.</creatorcontrib><creatorcontrib>Ofek, Eran O.</creatorcontrib><creatorcontrib>Perrott, Yvette</creatorcontrib><creatorcontrib>Porter, Michael</creatorcontrib><creatorcontrib>Reiley, Daniel J.</creatorcontrib><creatorcontrib>Rigault, Mickael</creatorcontrib><creatorcontrib>Rodriguez, Hector</creatorcontrib><creatorcontrib>Rusholme, Ben</creatorcontrib><creatorcontrib>Shupe, David L.</creatorcontrib><creatorcontrib>Titterington, David</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Horesh, Assaf</au><au>Sfaradi, Itai</au><au>Ergon, Mattias</au><au>Barbarino, Cristina</au><au>Sollerman, Jesper</au><au>Moldon, Javier</au><au>Dobie, Dougal</au><au>Schulze, Steve</au><au>Pérez-Torres, Miguel</au><au>Williams, David R. A.</au><au>Fremling, Christoffer</au><au>Gal-Yam, Avishay</au><au>Kulkarni, Shrinivas R.</au><au>O’Brien, Andrew</au><au>Lundqvist, Peter</au><au>Murphy, Tara</au><au>Fender, Rob</au><au>Anand, Shreya</au><au>Belicki, Justin</au><au>Bellm, Eric C.</au><au>Coughlin, Michael W.</au><au>De, Kishalay</au><au>Golkhou, V. Zach</au><au>Graham, Matthew J.</au><au>Green, Dave A.</au><au>Hankins, Matt</au><au>Kasliwal, Mansi</au><au>Kupfer, Thomas</au><au>Laher, Russ R.</au><au>Masci, Frank J.</au><au>Miller, A. A.</au><au>Neill, James D.</au><au>Ofek, Eran O.</au><au>Perrott, Yvette</au><au>Porter, Michael</au><au>Reiley, Daniel J.</au><au>Rigault, Mickael</au><au>Rodriguez, Hector</au><au>Rusholme, Ben</au><au>Shupe, David L.</au><au>Titterington, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>132</spage><pages>132-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source ( L ν ≈ 1.2 × 10 27 erg s − 1 Hz − 1 ). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of ϵ e / ϵ B  ≳  200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at ∼ 3 × 10 4 km s − 1 . Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is M ̇ ≈ 1.4 × 10 − 4 M ⊙ yr − 1 for an assumed wind velocity of 1000 km s − 1 . The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r −2 .</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abbd38</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4609-2791</orcidid><orcidid>https://orcid.org/0000-0002-0466-1119</orcidid><orcidid>https://orcid.org/0000-0002-6786-8774</orcidid><orcidid>https://orcid.org/0000-0001-9515-478X</orcidid><orcidid>https://orcid.org/0000-0003-4401-0430</orcidid><orcidid>https://orcid.org/0000-0001-5654-0266</orcidid><orcidid>https://orcid.org/0000-0002-5936-1156</orcidid><orcidid>https://orcid.org/0000-0002-3821-6144</orcidid><orcidid>https://orcid.org/0000-0002-3168-0139</orcidid><orcidid>https://orcid.org/0000-0002-8532-9395</orcidid><orcidid>https://orcid.org/0000-0002-6255-8240</orcidid><orcidid>https://orcid.org/0000-0001-7361-0246</orcidid><orcidid>https://orcid.org/0000-0002-2686-438X</orcidid><orcidid>https://orcid.org/0000-0002-8121-2560</orcidid><orcidid>https://orcid.org/0000-0002-3653-5598</orcidid><orcidid>https://orcid.org/0000-0002-8262-2924</orcidid><orcidid>https://orcid.org/0000-0003-0699-7019</orcidid><orcidid>https://orcid.org/0000-0001-7648-4142</orcidid><orcidid>https://orcid.org/0000-0002-4223-103X</orcidid><orcidid>https://orcid.org/0000-0002-3664-8082</orcidid><orcidid>https://orcid.org/0000-0003-0466-3779</orcidid><orcidid>https://orcid.org/0000-0001-5390-8563</orcidid><orcidid>https://orcid.org/0000-0002-6540-1484</orcidid><orcidid>https://orcid.org/0000-0001-8018-5348</orcidid><orcidid>https://orcid.org/0000-0002-8079-7608</orcidid><orcidid>https://orcid.org/0000-0003-1431-920X</orcidid><orcidid>https://orcid.org/0000-0003-2451-5482</orcidid><orcidid>https://orcid.org/0000-0003-3189-9998</orcidid><orcidid>https://orcid.org/0000-0001-6797-1889</orcidid><orcidid>https://orcid.org/0000-0001-8205-2506</orcidid><orcidid>https://orcid.org/0000-0003-1546-6615</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-11, Vol.903 (2), p.132
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_journals_2461028316
source IOP Publishing Free Content
subjects Astrophysics
Cooling
Core-collapse supernovae
Ejecta
Emission analysis
Galaxies
Optical observation
Physics
Radio astronomy
Radio emission
Radio observation
Radio observatories
Radio transient sources
Shock waves
Spiral galaxies
Stellar envelopes
Stellar winds
Supernova
Supernovae
Transient sources
Type Ic supernovae
Wavelengths
Wind speed
Wind velocities
X-ray transient sources
title A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-equipartition%20Shock%20Wave%20Traveling%20in%20a%20Dense%20Circumstellar%20Environment%20around%20SN%202020oi&rft.jtitle=The%20Astrophysical%20journal&rft.au=Horesh,%20Assaf&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=132&rft.pages=132-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abbd38&rft_dat=%3Cproquest_O3W%3E2461028316%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461028316&rft_id=info:pmid/&rfr_iscdi=true