Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells
Fullerene-passivated SnO2 electron transport layers (ETLs) offer a route for a continuous boost in the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, a detailed understanding on the photocarrier dynamics in PSCs consisting of fullerene-passivated SnO2 ETLs is still l...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (44), p.23607-23616 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23616 |
---|---|
container_issue | 44 |
container_start_page | 23607 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Shao-Ku, Huang Ying-Chiao, Wang Wei-Chen, Ke Yu-Ting, Kao Nian-Zu She Jia-Xing, Li Chih-Wei, Luo Yabushita, Atsushi Di-Yan, Wang Chang, Yuan Jay Tsukagoshi, Kazuhito Chun-Wei, Chen |
description | Fullerene-passivated SnO2 electron transport layers (ETLs) offer a route for a continuous boost in the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, a detailed understanding on the photocarrier dynamics in PSCs consisting of fullerene-passivated SnO2 ETLs is still lacking. Here, we use ultrafast pump-probe transient absorption spectroscopy to analyze the corresponding photocarrier dynamics across fullerene-modified SnO2 ETLs in PSCs. Both the C60 pyrrolidine tris-acid (CPTA)-modified SnO2 ETL and 6,6-phenyl C61-butyric acid methyl ester (PC61BM)-modified SnO2 ETL which have a favorable energy band edge alignment to perovskites, result in an enhanced electron injection rate after introducing these two fullerenes into SnO2-based PSCs compared to the SnO2 ETL without modification. Moreover, combining chemical measurements and density functional theory simulation results, it is confirmed that the interfacial chemical bond is tailored between the SnO2 surface and carboxylic acids of CPTA, thus establishing interface dipoles. Due to the existence of interface dipoles, the chemisorption of the CPTA fullerene functions as a recombination suppressor both at the CPTA-passivated SnO2/perovskite interface and inside perovskites. By contrast, the physisorption of the PC61BM fullerene on the SnO2 ETL exhibits relatively high recombination rates both at the SnO2/perovskite interface and inside perovskites. Therefore, the PSC based on the SnO2/CPTA ETL yields a PCE of more than 19%, which is superior to that of the reference PSC using PC61BM as a passivator ( |
doi_str_mv | 10.1039/d0ta08752a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2461010998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2461010998</sourcerecordid><originalsourceid>FETCH-LOGICAL-g150t-e23a0b94281198b6f73156e16732b38ca7a85c662ea48e4fb3f40abaae8aca413</originalsourceid><addsrcrecordid>eNo9TslOwzAQtRBIVKUXvsAS54CXxLGPqGKTKnGAnqtJOmldgl3GbiS-gl8mFMRc3jKj94axSymupdDuZi0yCFtXCk7YRIlKFHXpzOk_t_aczVLaiXGsEMa5CftaBoIB-96HDc9b5JH8xgceu6Pab2OOLRB5JL7-DPDu2_Sz7A59j4QBizWSHyD7YbyGlI48HgNewrPi2GObaTQyQUj7SBkp8bFhjxSH9OYz8hR7IN6OX6QLdtZBn3D2h1O2vL97nT8Wi-eHp_ntotjISuQClQbRuFJZKZ1tTFdrWRmUptaq0baFGmzVGqMQSotl1-iuFNAAoIUWSqmn7Oo3d0_x44Apr3bxQGGsXKnSSCGFc1Z_Axh-ajc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461010998</pqid></control><display><type>article</type><title>Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shao-Ku, Huang ; Ying-Chiao, Wang ; Wei-Chen, Ke ; Yu-Ting, Kao ; Nian-Zu She ; Jia-Xing, Li ; Chih-Wei, Luo ; Yabushita, Atsushi ; Di-Yan, Wang ; Chang, Yuan Jay ; Tsukagoshi, Kazuhito ; Chun-Wei, Chen</creator><creatorcontrib>Shao-Ku, Huang ; Ying-Chiao, Wang ; Wei-Chen, Ke ; Yu-Ting, Kao ; Nian-Zu She ; Jia-Xing, Li ; Chih-Wei, Luo ; Yabushita, Atsushi ; Di-Yan, Wang ; Chang, Yuan Jay ; Tsukagoshi, Kazuhito ; Chun-Wei, Chen</creatorcontrib><description>Fullerene-passivated SnO2 electron transport layers (ETLs) offer a route for a continuous boost in the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, a detailed understanding on the photocarrier dynamics in PSCs consisting of fullerene-passivated SnO2 ETLs is still lacking. Here, we use ultrafast pump-probe transient absorption spectroscopy to analyze the corresponding photocarrier dynamics across fullerene-modified SnO2 ETLs in PSCs. Both the C60 pyrrolidine tris-acid (CPTA)-modified SnO2 ETL and 6,6-phenyl C61-butyric acid methyl ester (PC61BM)-modified SnO2 ETL which have a favorable energy band edge alignment to perovskites, result in an enhanced electron injection rate after introducing these two fullerenes into SnO2-based PSCs compared to the SnO2 ETL without modification. Moreover, combining chemical measurements and density functional theory simulation results, it is confirmed that the interfacial chemical bond is tailored between the SnO2 surface and carboxylic acids of CPTA, thus establishing interface dipoles. Due to the existence of interface dipoles, the chemisorption of the CPTA fullerene functions as a recombination suppressor both at the CPTA-passivated SnO2/perovskite interface and inside perovskites. By contrast, the physisorption of the PC61BM fullerene on the SnO2 ETL exhibits relatively high recombination rates both at the SnO2/perovskite interface and inside perovskites. Therefore, the PSC based on the SnO2/CPTA ETL yields a PCE of more than 19%, which is superior to that of the reference PSC using PC61BM as a passivator (<18%). This study describes that interfacial carrier dynamics in PSCs consisting of fullerene-modified ETLs can be clearly resolved using ultrafast spectroscopy, which further provides guidance for future design for interfacial modification of ETLs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta08752a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectroscopy ; Buckminsterfullerene ; Butyric acid ; Carboxylic acids ; Chemical bonds ; Chemisorption ; Density functional theory ; Design modifications ; Dipoles ; Dynamics ; Electron transport ; Energy bands ; Energy conversion efficiency ; Fullerenes ; Perovskites ; Photovoltaic cells ; Pyrrolidine ; Recombination ; Solar cells ; Solar power ; Spectrum analysis ; Tin dioxide</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (44), p.23607-23616</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shao-Ku, Huang</creatorcontrib><creatorcontrib>Ying-Chiao, Wang</creatorcontrib><creatorcontrib>Wei-Chen, Ke</creatorcontrib><creatorcontrib>Yu-Ting, Kao</creatorcontrib><creatorcontrib>Nian-Zu She</creatorcontrib><creatorcontrib>Jia-Xing, Li</creatorcontrib><creatorcontrib>Chih-Wei, Luo</creatorcontrib><creatorcontrib>Yabushita, Atsushi</creatorcontrib><creatorcontrib>Di-Yan, Wang</creatorcontrib><creatorcontrib>Chang, Yuan Jay</creatorcontrib><creatorcontrib>Tsukagoshi, Kazuhito</creatorcontrib><creatorcontrib>Chun-Wei, Chen</creatorcontrib><title>Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Fullerene-passivated SnO2 electron transport layers (ETLs) offer a route for a continuous boost in the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, a detailed understanding on the photocarrier dynamics in PSCs consisting of fullerene-passivated SnO2 ETLs is still lacking. Here, we use ultrafast pump-probe transient absorption spectroscopy to analyze the corresponding photocarrier dynamics across fullerene-modified SnO2 ETLs in PSCs. Both the C60 pyrrolidine tris-acid (CPTA)-modified SnO2 ETL and 6,6-phenyl C61-butyric acid methyl ester (PC61BM)-modified SnO2 ETL which have a favorable energy band edge alignment to perovskites, result in an enhanced electron injection rate after introducing these two fullerenes into SnO2-based PSCs compared to the SnO2 ETL without modification. Moreover, combining chemical measurements and density functional theory simulation results, it is confirmed that the interfacial chemical bond is tailored between the SnO2 surface and carboxylic acids of CPTA, thus establishing interface dipoles. Due to the existence of interface dipoles, the chemisorption of the CPTA fullerene functions as a recombination suppressor both at the CPTA-passivated SnO2/perovskite interface and inside perovskites. By contrast, the physisorption of the PC61BM fullerene on the SnO2 ETL exhibits relatively high recombination rates both at the SnO2/perovskite interface and inside perovskites. Therefore, the PSC based on the SnO2/CPTA ETL yields a PCE of more than 19%, which is superior to that of the reference PSC using PC61BM as a passivator (<18%). This study describes that interfacial carrier dynamics in PSCs consisting of fullerene-modified ETLs can be clearly resolved using ultrafast spectroscopy, which further provides guidance for future design for interfacial modification of ETLs.</description><subject>Absorption spectroscopy</subject><subject>Buckminsterfullerene</subject><subject>Butyric acid</subject><subject>Carboxylic acids</subject><subject>Chemical bonds</subject><subject>Chemisorption</subject><subject>Density functional theory</subject><subject>Design modifications</subject><subject>Dipoles</subject><subject>Dynamics</subject><subject>Electron transport</subject><subject>Energy bands</subject><subject>Energy conversion efficiency</subject><subject>Fullerenes</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Pyrrolidine</subject><subject>Recombination</subject><subject>Solar cells</subject><subject>Solar power</subject><subject>Spectrum analysis</subject><subject>Tin dioxide</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9TslOwzAQtRBIVKUXvsAS54CXxLGPqGKTKnGAnqtJOmldgl3GbiS-gl8mFMRc3jKj94axSymupdDuZi0yCFtXCk7YRIlKFHXpzOk_t_aczVLaiXGsEMa5CftaBoIB-96HDc9b5JH8xgceu6Pab2OOLRB5JL7-DPDu2_Sz7A59j4QBizWSHyD7YbyGlI48HgNewrPi2GObaTQyQUj7SBkp8bFhjxSH9OYz8hR7IN6OX6QLdtZBn3D2h1O2vL97nT8Wi-eHp_ntotjISuQClQbRuFJZKZ1tTFdrWRmUptaq0baFGmzVGqMQSotl1-iuFNAAoIUWSqmn7Oo3d0_x44Apr3bxQGGsXKnSSCGFc1Z_Axh-ajc</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shao-Ku, Huang</creator><creator>Ying-Chiao, Wang</creator><creator>Wei-Chen, Ke</creator><creator>Yu-Ting, Kao</creator><creator>Nian-Zu She</creator><creator>Jia-Xing, Li</creator><creator>Chih-Wei, Luo</creator><creator>Yabushita, Atsushi</creator><creator>Di-Yan, Wang</creator><creator>Chang, Yuan Jay</creator><creator>Tsukagoshi, Kazuhito</creator><creator>Chun-Wei, Chen</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200101</creationdate><title>Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells</title><author>Shao-Ku, Huang ; Ying-Chiao, Wang ; Wei-Chen, Ke ; Yu-Ting, Kao ; Nian-Zu She ; Jia-Xing, Li ; Chih-Wei, Luo ; Yabushita, Atsushi ; Di-Yan, Wang ; Chang, Yuan Jay ; Tsukagoshi, Kazuhito ; Chun-Wei, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g150t-e23a0b94281198b6f73156e16732b38ca7a85c662ea48e4fb3f40abaae8aca413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectroscopy</topic><topic>Buckminsterfullerene</topic><topic>Butyric acid</topic><topic>Carboxylic acids</topic><topic>Chemical bonds</topic><topic>Chemisorption</topic><topic>Density functional theory</topic><topic>Design modifications</topic><topic>Dipoles</topic><topic>Dynamics</topic><topic>Electron transport</topic><topic>Energy bands</topic><topic>Energy conversion efficiency</topic><topic>Fullerenes</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Pyrrolidine</topic><topic>Recombination</topic><topic>Solar cells</topic><topic>Solar power</topic><topic>Spectrum analysis</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao-Ku, Huang</creatorcontrib><creatorcontrib>Ying-Chiao, Wang</creatorcontrib><creatorcontrib>Wei-Chen, Ke</creatorcontrib><creatorcontrib>Yu-Ting, Kao</creatorcontrib><creatorcontrib>Nian-Zu She</creatorcontrib><creatorcontrib>Jia-Xing, Li</creatorcontrib><creatorcontrib>Chih-Wei, Luo</creatorcontrib><creatorcontrib>Yabushita, Atsushi</creatorcontrib><creatorcontrib>Di-Yan, Wang</creatorcontrib><creatorcontrib>Chang, Yuan Jay</creatorcontrib><creatorcontrib>Tsukagoshi, Kazuhito</creatorcontrib><creatorcontrib>Chun-Wei, Chen</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao-Ku, Huang</au><au>Ying-Chiao, Wang</au><au>Wei-Chen, Ke</au><au>Yu-Ting, Kao</au><au>Nian-Zu She</au><au>Jia-Xing, Li</au><au>Chih-Wei, Luo</au><au>Yabushita, Atsushi</au><au>Di-Yan, Wang</au><au>Chang, Yuan Jay</au><au>Tsukagoshi, Kazuhito</au><au>Chun-Wei, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>44</issue><spage>23607</spage><epage>23616</epage><pages>23607-23616</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Fullerene-passivated SnO2 electron transport layers (ETLs) offer a route for a continuous boost in the power conversion efficiencies (PCEs) of perovskite solar cells (PSCs). However, a detailed understanding on the photocarrier dynamics in PSCs consisting of fullerene-passivated SnO2 ETLs is still lacking. Here, we use ultrafast pump-probe transient absorption spectroscopy to analyze the corresponding photocarrier dynamics across fullerene-modified SnO2 ETLs in PSCs. Both the C60 pyrrolidine tris-acid (CPTA)-modified SnO2 ETL and 6,6-phenyl C61-butyric acid methyl ester (PC61BM)-modified SnO2 ETL which have a favorable energy band edge alignment to perovskites, result in an enhanced electron injection rate after introducing these two fullerenes into SnO2-based PSCs compared to the SnO2 ETL without modification. Moreover, combining chemical measurements and density functional theory simulation results, it is confirmed that the interfacial chemical bond is tailored between the SnO2 surface and carboxylic acids of CPTA, thus establishing interface dipoles. Due to the existence of interface dipoles, the chemisorption of the CPTA fullerene functions as a recombination suppressor both at the CPTA-passivated SnO2/perovskite interface and inside perovskites. By contrast, the physisorption of the PC61BM fullerene on the SnO2 ETL exhibits relatively high recombination rates both at the SnO2/perovskite interface and inside perovskites. Therefore, the PSC based on the SnO2/CPTA ETL yields a PCE of more than 19%, which is superior to that of the reference PSC using PC61BM as a passivator (<18%). This study describes that interfacial carrier dynamics in PSCs consisting of fullerene-modified ETLs can be clearly resolved using ultrafast spectroscopy, which further provides guidance for future design for interfacial modification of ETLs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta08752a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (44), p.23607-23616 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2461010998 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Absorption spectroscopy Buckminsterfullerene Butyric acid Carboxylic acids Chemical bonds Chemisorption Density functional theory Design modifications Dipoles Dynamics Electron transport Energy bands Energy conversion efficiency Fullerenes Perovskites Photovoltaic cells Pyrrolidine Recombination Solar cells Solar power Spectrum analysis Tin dioxide |
title | Unravelling the origin of the photocarrier dynamics of fullerene-derivative passivation of SnO2 electron transporters in perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T17%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20origin%20of%20the%20photocarrier%20dynamics%20of%20fullerene-derivative%20passivation%20of%20SnO2%20electron%20transporters%20in%20perovskite%20solar%20cells&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Shao-Ku,%20Huang&rft.date=2020-01-01&rft.volume=8&rft.issue=44&rft.spage=23607&rft.epage=23616&rft.pages=23607-23616&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta08752a&rft_dat=%3Cproquest%3E2461010998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461010998&rft_id=info:pmid/&rfr_iscdi=true |