Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine
Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for...
Gespeichert in:
Veröffentlicht in: | Computers & electrical engineering 2020-07, Vol.85, p.106640-11, Article 106640 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 106640 |
container_title | Computers & electrical engineering |
container_volume | 85 |
creator | Goel, Tripti Murugan, R |
description | Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness. |
doi_str_mv | 10.1016/j.compeleceng.2020.106640 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460974917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579062030495X</els_id><sourcerecordid>2460974917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0asU-zEzWMJoQVEUSUEa8u1x8FRagc7rYCvx1VYsGQ1rzujOwehS0pmlND8up1Jt-2hAwm2maUkPfTznJEjNKFlUSWkmM-P0YQQNk-KiuSn6CyElsQ6p-UENXUnQjDagMfaebwUEvALSNdYMxhn8a0IoHBM7gB6XDu7d93uMBEdTvC6H8zWfEfFE3gLHV58Dh62gFcgvDW2wc9CvhsL5-hEiy7AxW-corfl4rV-SFbr-8f6ZpXItKiGBGQmN9GyoqmUmhSCVvNM5RXLNxD9lpuMaZZJWmaqBKo1Aa3KNNswXQBTUmVTdDXe7b372EEYeOt2PpoNPGU5qQpW0SKqqlElvQvBg-a9N1vhvzgl_MCVt_wPV37gykeucbcedyG-sY_ceJAGrARlPMiBK2f-ceUHf6aH4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460974917</pqid></control><display><type>article</type><title>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Goel, Tripti ; Murugan, R</creator><creatorcontrib>Goel, Tripti ; Murugan, R</creatorcontrib><description>Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2020.106640</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Back Propagation ; Biometrics ; Classification ; Classifiers ; Computer vision ; Convolutional Neural Network ; Deep Learning ; Extreme Learning Machine ; Face recognition ; Feature extraction ; Kernel Function ; Kernels ; Machine learning ; Occlusion ; Particle Swarm Optimization ; Performance evaluation</subject><ispartof>Computers & electrical engineering, 2020-07, Vol.85, p.106640-11, Article 106640</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</citedby><cites>FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2020.106640$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Goel, Tripti</creatorcontrib><creatorcontrib>Murugan, R</creatorcontrib><title>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</title><title>Computers & electrical engineering</title><description>Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back Propagation</subject><subject>Biometrics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer vision</subject><subject>Convolutional Neural Network</subject><subject>Deep Learning</subject><subject>Extreme Learning Machine</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Kernel Function</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Occlusion</subject><subject>Particle Swarm Optimization</subject><subject>Performance evaluation</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0asU-zEzWMJoQVEUSUEa8u1x8FRagc7rYCvx1VYsGQ1rzujOwehS0pmlND8up1Jt-2hAwm2maUkPfTznJEjNKFlUSWkmM-P0YQQNk-KiuSn6CyElsQ6p-UENXUnQjDagMfaebwUEvALSNdYMxhn8a0IoHBM7gB6XDu7d93uMBEdTvC6H8zWfEfFE3gLHV58Dh62gFcgvDW2wc9CvhsL5-hEiy7AxW-corfl4rV-SFbr-8f6ZpXItKiGBGQmN9GyoqmUmhSCVvNM5RXLNxD9lpuMaZZJWmaqBKo1Aa3KNNswXQBTUmVTdDXe7b372EEYeOt2PpoNPGU5qQpW0SKqqlElvQvBg-a9N1vhvzgl_MCVt_wPV37gykeucbcedyG-sY_ceJAGrARlPMiBK2f-ceUHf6aH4Q</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Goel, Tripti</creator><creator>Murugan, R</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202007</creationdate><title>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</title><author>Goel, Tripti ; Murugan, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back Propagation</topic><topic>Biometrics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer vision</topic><topic>Convolutional Neural Network</topic><topic>Deep Learning</topic><topic>Extreme Learning Machine</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Kernel Function</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Occlusion</topic><topic>Particle Swarm Optimization</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goel, Tripti</creatorcontrib><creatorcontrib>Murugan, R</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goel, Tripti</au><au>Murugan, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</atitle><jtitle>Computers & electrical engineering</jtitle><date>2020-07</date><risdate>2020</risdate><volume>85</volume><spage>106640</spage><epage>11</epage><pages>106640-11</pages><artnum>106640</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2020.106640</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7906 |
ispartof | Computers & electrical engineering, 2020-07, Vol.85, p.106640-11, Article 106640 |
issn | 0045-7906 1879-0755 |
language | eng |
recordid | cdi_proquest_journals_2460974917 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Artificial neural networks Back Propagation Biometrics Classification Classifiers Computer vision Convolutional Neural Network Deep Learning Extreme Learning Machine Face recognition Feature extraction Kernel Function Kernels Machine learning Occlusion Particle Swarm Optimization Performance evaluation |
title | Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifier%20for%20Face%20Recognition%20Based%20on%20Deep%20Convolutional%20-%20Optimized%20Kernel%20Extreme%20Learning%20Machine&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Goel,%20Tripti&rft.date=2020-07&rft.volume=85&rft.spage=106640&rft.epage=11&rft.pages=106640-11&rft.artnum=106640&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2020.106640&rft_dat=%3Cproquest_cross%3E2460974917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460974917&rft_id=info:pmid/&rft_els_id=S004579062030495X&rfr_iscdi=true |