Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine

Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering 2020-07, Vol.85, p.106640-11, Article 106640
Hauptverfasser: Goel, Tripti, Murugan, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 106640
container_title Computers & electrical engineering
container_volume 85
creator Goel, Tripti
Murugan, R
description Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.
doi_str_mv 10.1016/j.compeleceng.2020.106640
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460974917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579062030495X</els_id><sourcerecordid>2460974917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</originalsourceid><addsrcrecordid>eNqNkMtOwzAQRS0EEqXwD0asU-zEzWMJoQVEUSUEa8u1x8FRagc7rYCvx1VYsGQ1rzujOwehS0pmlND8up1Jt-2hAwm2maUkPfTznJEjNKFlUSWkmM-P0YQQNk-KiuSn6CyElsQ6p-UENXUnQjDagMfaebwUEvALSNdYMxhn8a0IoHBM7gB6XDu7d93uMBEdTvC6H8zWfEfFE3gLHV58Dh62gFcgvDW2wc9CvhsL5-hEiy7AxW-corfl4rV-SFbr-8f6ZpXItKiGBGQmN9GyoqmUmhSCVvNM5RXLNxD9lpuMaZZJWmaqBKo1Aa3KNNswXQBTUmVTdDXe7b372EEYeOt2PpoNPGU5qQpW0SKqqlElvQvBg-a9N1vhvzgl_MCVt_wPV37gykeucbcedyG-sY_ceJAGrARlPMiBK2f-ceUHf6aH4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460974917</pqid></control><display><type>article</type><title>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Goel, Tripti ; Murugan, R</creator><creatorcontrib>Goel, Tripti ; Murugan, R</creatorcontrib><description>Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&amp;T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.</description><identifier>ISSN: 0045-7906</identifier><identifier>EISSN: 1879-0755</identifier><identifier>DOI: 10.1016/j.compeleceng.2020.106640</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Artificial neural networks ; Back Propagation ; Biometrics ; Classification ; Classifiers ; Computer vision ; Convolutional Neural Network ; Deep Learning ; Extreme Learning Machine ; Face recognition ; Feature extraction ; Kernel Function ; Kernels ; Machine learning ; Occlusion ; Particle Swarm Optimization ; Performance evaluation</subject><ispartof>Computers &amp; electrical engineering, 2020-07, Vol.85, p.106640-11, Article 106640</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</citedby><cites>FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compeleceng.2020.106640$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Goel, Tripti</creatorcontrib><creatorcontrib>Murugan, R</creatorcontrib><title>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</title><title>Computers &amp; electrical engineering</title><description>Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&amp;T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back Propagation</subject><subject>Biometrics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Computer vision</subject><subject>Convolutional Neural Network</subject><subject>Deep Learning</subject><subject>Extreme Learning Machine</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Kernel Function</subject><subject>Kernels</subject><subject>Machine learning</subject><subject>Occlusion</subject><subject>Particle Swarm Optimization</subject><subject>Performance evaluation</subject><issn>0045-7906</issn><issn>1879-0755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOwzAQRS0EEqXwD0asU-zEzWMJoQVEUSUEa8u1x8FRagc7rYCvx1VYsGQ1rzujOwehS0pmlND8up1Jt-2hAwm2maUkPfTznJEjNKFlUSWkmM-P0YQQNk-KiuSn6CyElsQ6p-UENXUnQjDagMfaebwUEvALSNdYMxhn8a0IoHBM7gB6XDu7d93uMBEdTvC6H8zWfEfFE3gLHV58Dh62gFcgvDW2wc9CvhsL5-hEiy7AxW-corfl4rV-SFbr-8f6ZpXItKiGBGQmN9GyoqmUmhSCVvNM5RXLNxD9lpuMaZZJWmaqBKo1Aa3KNNswXQBTUmVTdDXe7b372EEYeOt2PpoNPGU5qQpW0SKqqlElvQvBg-a9N1vhvzgl_MCVt_wPV37gykeucbcedyG-sY_ceJAGrARlPMiBK2f-ceUHf6aH4Q</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Goel, Tripti</creator><creator>Murugan, R</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202007</creationdate><title>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</title><author>Goel, Tripti ; Murugan, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-ec3cb075d12ccf07a1953d6946be6188b34f43c183d8e1ff0efd823b4f7e4dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back Propagation</topic><topic>Biometrics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Computer vision</topic><topic>Convolutional Neural Network</topic><topic>Deep Learning</topic><topic>Extreme Learning Machine</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Kernel Function</topic><topic>Kernels</topic><topic>Machine learning</topic><topic>Occlusion</topic><topic>Particle Swarm Optimization</topic><topic>Performance evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goel, Tripti</creatorcontrib><creatorcontrib>Murugan, R</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goel, Tripti</au><au>Murugan, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine</atitle><jtitle>Computers &amp; electrical engineering</jtitle><date>2020-07</date><risdate>2020</risdate><volume>85</volume><spage>106640</spage><epage>11</epage><pages>106640-11</pages><artnum>106640</artnum><issn>0045-7906</issn><eissn>1879-0755</eissn><abstract>Face recognition task has been an active research area in recent years in computer vision and biometrics. Feature extraction and classification are the most significant steps for accurate face recognition systems. Conventionally, the Eigenface approach or frequency domain features have been used for feature extraction, but they are not invariant to outdoor conditions like lighting, pose, expression, and occlusion. Multiple convolutional and pooling layers of Deep Learning Networks (DLN) will efficiently extract the face database’s high-level features in the present work. These features have given to the Kernel Extreme Learning Machine (KELM) classifier, whose parameters have optimized using Particle Swarm Optimization (PSO). The proposed Deep Convolutional-Optimized Kernel Extreme Learning Machine (DC-OKELM) algorithm leads to better performance results and fast learning speed than classification using deep neural networks. The performance of DC-OKELM has evaluated on four standards face databases: AT&amp;T, CMU-PIE, Yale Faces, and UMIST. Experimental results have compared with other state-of-the-art classifiers in terms of error rate and network training time, which shows the proposed DC-OKELM classifier’s effectiveness.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compeleceng.2020.106640</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7906
ispartof Computers & electrical engineering, 2020-07, Vol.85, p.106640-11, Article 106640
issn 0045-7906
1879-0755
language eng
recordid cdi_proquest_journals_2460974917
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial neural networks
Back Propagation
Biometrics
Classification
Classifiers
Computer vision
Convolutional Neural Network
Deep Learning
Extreme Learning Machine
Face recognition
Feature extraction
Kernel Function
Kernels
Machine learning
Occlusion
Particle Swarm Optimization
Performance evaluation
title Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classifier%20for%20Face%20Recognition%20Based%20on%20Deep%20Convolutional%20-%20Optimized%20Kernel%20Extreme%20Learning%20Machine&rft.jtitle=Computers%20&%20electrical%20engineering&rft.au=Goel,%20Tripti&rft.date=2020-07&rft.volume=85&rft.spage=106640&rft.epage=11&rft.pages=106640-11&rft.artnum=106640&rft.issn=0045-7906&rft.eissn=1879-0755&rft_id=info:doi/10.1016/j.compeleceng.2020.106640&rft_dat=%3Cproquest_cross%3E2460974917%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460974917&rft_id=info:pmid/&rft_els_id=S004579062030495X&rfr_iscdi=true