Tactile SLAM: Real-time inference of shape and pose from planar pushing

Tactile perception is central to robot manipulation in unstructured environments. However, it requires contact, and a mature implementation must infer object models while also accounting for the motion induced by the interaction. In this work, we present a method to estimate both object shape and po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Sudharshan Suresh, Bauza, Maria, Kuan-Ting, Yu, Mangelson, Joshua G, Rodriguez, Alberto, Kaess, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sudharshan Suresh
Bauza, Maria
Kuan-Ting, Yu
Mangelson, Joshua G
Rodriguez, Alberto
Kaess, Michael
description Tactile perception is central to robot manipulation in unstructured environments. However, it requires contact, and a mature implementation must infer object models while also accounting for the motion induced by the interaction. In this work, we present a method to estimate both object shape and pose in real-time from a stream of tactile measurements. This is applied towards tactile exploration of an unknown object by planar pushing. We consider this as an online SLAM problem with a nonparametric shape representation. Our formulation of tactile inference alternates between Gaussian process implicit surface regression and pose estimation on a factor graph. Through a combination of local Gaussian processes and fixed-lag smoothing, we infer object shape and pose in real-time. We evaluate our system across different objects in both simulated and real-world planar pushing tasks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2460884246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460884246</sourcerecordid><originalsourceid>FETCH-proquest_journals_24608842463</originalsourceid><addsrcrecordid>eNqNjrsKwjAUQIMgWLT_cMG5EJO2FjcRH4Mu2r1c6o1NSZOYtP-vgx_gdIZzhjNjiZByk1W5EAuWxthzzkW5FUUhE3ausR21IXhc97cd3AlNNuqBQFtFgWxL4BTEDj0B2id4FwlUcAN4gxYD-Cl22r5WbK7QREp_XLL16VgfLpkP7j1RHJveTcF-VSPyklffm7yU_1UfY486oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460884246</pqid></control><display><type>article</type><title>Tactile SLAM: Real-time inference of shape and pose from planar pushing</title><source>Freely Accessible Journals</source><creator>Sudharshan Suresh ; Bauza, Maria ; Kuan-Ting, Yu ; Mangelson, Joshua G ; Rodriguez, Alberto ; Kaess, Michael</creator><creatorcontrib>Sudharshan Suresh ; Bauza, Maria ; Kuan-Ting, Yu ; Mangelson, Joshua G ; Rodriguez, Alberto ; Kaess, Michael</creatorcontrib><description>Tactile perception is central to robot manipulation in unstructured environments. However, it requires contact, and a mature implementation must infer object models while also accounting for the motion induced by the interaction. In this work, we present a method to estimate both object shape and pose in real-time from a stream of tactile measurements. This is applied towards tactile exploration of an unknown object by planar pushing. We consider this as an online SLAM problem with a nonparametric shape representation. Our formulation of tactile inference alternates between Gaussian process implicit surface regression and pose estimation on a factor graph. Through a combination of local Gaussian processes and fixed-lag smoothing, we infer object shape and pose in real-time. We evaluate our system across different objects in both simulated and real-world planar pushing tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gaussian process ; Inference ; Pushing ; Real time ; Tactile discrimination</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sudharshan Suresh</creatorcontrib><creatorcontrib>Bauza, Maria</creatorcontrib><creatorcontrib>Kuan-Ting, Yu</creatorcontrib><creatorcontrib>Mangelson, Joshua G</creatorcontrib><creatorcontrib>Rodriguez, Alberto</creatorcontrib><creatorcontrib>Kaess, Michael</creatorcontrib><title>Tactile SLAM: Real-time inference of shape and pose from planar pushing</title><title>arXiv.org</title><description>Tactile perception is central to robot manipulation in unstructured environments. However, it requires contact, and a mature implementation must infer object models while also accounting for the motion induced by the interaction. In this work, we present a method to estimate both object shape and pose in real-time from a stream of tactile measurements. This is applied towards tactile exploration of an unknown object by planar pushing. We consider this as an online SLAM problem with a nonparametric shape representation. Our formulation of tactile inference alternates between Gaussian process implicit surface regression and pose estimation on a factor graph. Through a combination of local Gaussian processes and fixed-lag smoothing, we infer object shape and pose in real-time. We evaluate our system across different objects in both simulated and real-world planar pushing tasks.</description><subject>Gaussian process</subject><subject>Inference</subject><subject>Pushing</subject><subject>Real time</subject><subject>Tactile discrimination</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjrsKwjAUQIMgWLT_cMG5EJO2FjcRH4Mu2r1c6o1NSZOYtP-vgx_gdIZzhjNjiZByk1W5EAuWxthzzkW5FUUhE3ausR21IXhc97cd3AlNNuqBQFtFgWxL4BTEDj0B2id4FwlUcAN4gxYD-Cl22r5WbK7QREp_XLL16VgfLpkP7j1RHJveTcF-VSPyklffm7yU_1UfY486oA</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Sudharshan Suresh</creator><creator>Bauza, Maria</creator><creator>Kuan-Ting, Yu</creator><creator>Mangelson, Joshua G</creator><creator>Rodriguez, Alberto</creator><creator>Kaess, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210326</creationdate><title>Tactile SLAM: Real-time inference of shape and pose from planar pushing</title><author>Sudharshan Suresh ; Bauza, Maria ; Kuan-Ting, Yu ; Mangelson, Joshua G ; Rodriguez, Alberto ; Kaess, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24608842463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Gaussian process</topic><topic>Inference</topic><topic>Pushing</topic><topic>Real time</topic><topic>Tactile discrimination</topic><toplevel>online_resources</toplevel><creatorcontrib>Sudharshan Suresh</creatorcontrib><creatorcontrib>Bauza, Maria</creatorcontrib><creatorcontrib>Kuan-Ting, Yu</creatorcontrib><creatorcontrib>Mangelson, Joshua G</creatorcontrib><creatorcontrib>Rodriguez, Alberto</creatorcontrib><creatorcontrib>Kaess, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudharshan Suresh</au><au>Bauza, Maria</au><au>Kuan-Ting, Yu</au><au>Mangelson, Joshua G</au><au>Rodriguez, Alberto</au><au>Kaess, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Tactile SLAM: Real-time inference of shape and pose from planar pushing</atitle><jtitle>arXiv.org</jtitle><date>2021-03-26</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Tactile perception is central to robot manipulation in unstructured environments. However, it requires contact, and a mature implementation must infer object models while also accounting for the motion induced by the interaction. In this work, we present a method to estimate both object shape and pose in real-time from a stream of tactile measurements. This is applied towards tactile exploration of an unknown object by planar pushing. We consider this as an online SLAM problem with a nonparametric shape representation. Our formulation of tactile inference alternates between Gaussian process implicit surface regression and pose estimation on a factor graph. Through a combination of local Gaussian processes and fixed-lag smoothing, we infer object shape and pose in real-time. We evaluate our system across different objects in both simulated and real-world planar pushing tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2460884246
source Freely Accessible Journals
subjects Gaussian process
Inference
Pushing
Real time
Tactile discrimination
title Tactile SLAM: Real-time inference of shape and pose from planar pushing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Tactile%20SLAM:%20Real-time%20inference%20of%20shape%20and%20pose%20from%20planar%20pushing&rft.jtitle=arXiv.org&rft.au=Sudharshan%20Suresh&rft.date=2021-03-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2460884246%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460884246&rft_id=info:pmid/&rfr_iscdi=true