Recursive principal component analysis for model order reduction with application in nonlinear Bayesian filtering

Proper orthogonal decomposition (POD) is a useful technique for feature extraction, model order reduction and data compression and has been widely used in different science and engineering disciplines. Numerous papers have been published on the application of offline POD, i.e., batch POD (BPOD) in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-11, Vol.371, p.113334, Article 113334
Hauptverfasser: Ebrahimzadeh Hassanabadi, Mohsen, Heidarpour, Amin, Eftekhar Azam, Saeed, Arashpour, Mehrdad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 113334
container_title Computer methods in applied mechanics and engineering
container_volume 371
creator Ebrahimzadeh Hassanabadi, Mohsen
Heidarpour, Amin
Eftekhar Azam, Saeed
Arashpour, Mehrdad
description Proper orthogonal decomposition (POD) is a useful technique for feature extraction, model order reduction and data compression and has been widely used in different science and engineering disciplines. Numerous papers have been published on the application of offline POD, i.e., batch POD (BPOD) in civil and mechanical engineering encompassing Karhunen–Loève decomposition (KLD), principal component analysis (PCA), and singular value decomposition (SVD). Nevertheless, online POD which is more suited for online feature extraction and monitoring has been scarcely addressed when dealing with civil and mechanical systems, particularly in structural dynamics. In this paper, a number of recursive POD (RPOD) methods in form of recursive PCA (RPCA) are overviewed with their application to structural dynamics. RPCA with numerical eigenvalue decomposition (EVD), incremental principal component analysis (IPCA), matrix perturbation method, and Kalman filter RPCA (KFRPCA) are presented; their performance is probed in terms of initialization, structural parameter modification, noisy observation, and alteration of loading statistics. The novel KFRPCA algorithm developed in this paper is reformulated to resolve the unobservability issue of higher modes which was present in its previous version in the published literature. Online stochastic output-only system identification is presented by synergizing RPCA with nonlinear Bayesian filter. Augmented extended Kalman filter (AEKF) is employed to perform unknown-input dual estimation. •Shortcomings of matrix perturbation method are underlined.•IPCA is shown to be superior to matrix perturbation method.•Higher modes observability issue of KFRPCA is resolved.•RPCAs robustness to initialization, noise, input, and parameter variation are assessed.•Unknown input system identification is dealt with using AEKF and RPCA.
doi_str_mv 10.1016/j.cma.2020.113334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460791898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520305193</els_id><sourcerecordid>2460791898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-bd1d81aff362f6060d4b883f42116d1d9eb8c70e747777b421a73ea8bb4ee8aa3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-AG8Bz13z6LYpnnTxBQuC6DmkyVRT2qSbtMp-e7PWs3MZ5vGfxw-hS0pWlNDiul3pXq0YYSmmnPP8CC2oKKuMUS6O0YKQfJ2Vgq1P0VmMLUkmKFug3SvoKUT7BXgI1mk7qA5r3w_egRuxcqrbRxtx4wPuvYEO-2Ag4ABm0qP1Dn_b8ROrYeisVr8J67DzrrMOVMB3ag_RKocb242QNnyco5NGdREu_vwSvT_cv22esu3L4_PmdptpztZjVhtqBFVNwwvWFKQgJq-F4E3OKC1SrYJa6JJAmZfJ6pRWJQcl6joHEErxJbqa5w7B7yaIo2z9FNI_UbK8IGVFRSVSF527dPAxBmhkwtCrsJeUyANZ2cpEVh7Iypls0tzMGkjnf1kIMmoLToOxAfQojbf_qH8AfHeDUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460791898</pqid></control><display><type>article</type><title>Recursive principal component analysis for model order reduction with application in nonlinear Bayesian filtering</title><source>Elsevier ScienceDirect Journals</source><creator>Ebrahimzadeh Hassanabadi, Mohsen ; Heidarpour, Amin ; Eftekhar Azam, Saeed ; Arashpour, Mehrdad</creator><creatorcontrib>Ebrahimzadeh Hassanabadi, Mohsen ; Heidarpour, Amin ; Eftekhar Azam, Saeed ; Arashpour, Mehrdad</creatorcontrib><description>Proper orthogonal decomposition (POD) is a useful technique for feature extraction, model order reduction and data compression and has been widely used in different science and engineering disciplines. Numerous papers have been published on the application of offline POD, i.e., batch POD (BPOD) in civil and mechanical engineering encompassing Karhunen–Loève decomposition (KLD), principal component analysis (PCA), and singular value decomposition (SVD). Nevertheless, online POD which is more suited for online feature extraction and monitoring has been scarcely addressed when dealing with civil and mechanical systems, particularly in structural dynamics. In this paper, a number of recursive POD (RPOD) methods in form of recursive PCA (RPCA) are overviewed with their application to structural dynamics. RPCA with numerical eigenvalue decomposition (EVD), incremental principal component analysis (IPCA), matrix perturbation method, and Kalman filter RPCA (KFRPCA) are presented; their performance is probed in terms of initialization, structural parameter modification, noisy observation, and alteration of loading statistics. The novel KFRPCA algorithm developed in this paper is reformulated to resolve the unobservability issue of higher modes which was present in its previous version in the published literature. Online stochastic output-only system identification is presented by synergizing RPCA with nonlinear Bayesian filter. Augmented extended Kalman filter (AEKF) is employed to perform unknown-input dual estimation. •Shortcomings of matrix perturbation method are underlined.•IPCA is shown to be superior to matrix perturbation method.•Higher modes observability issue of KFRPCA is resolved.•RPCAs robustness to initialization, noise, input, and parameter variation are assessed.•Unknown input system identification is dealt with using AEKF and RPCA.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.113334</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Bayesian analysis ; Data compression ; Decomposition ; Dynamic structural analysis ; Eigenvalues ; Extended Kalman filter ; Feature extraction ; Kalman filters ; Mechanical engineering ; Mechanical systems ; Model reduction ; Model updating ; Nonlinear Bayesian filter ; Online model order reduction ; Parameter modification ; Perturbation methods ; Principal components analysis ; Proper Orthogonal Decomposition ; Recursive principal component analysis (RPCA) ; Singular value decomposition ; System identification</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-11, Vol.371, p.113334, Article 113334</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-bd1d81aff362f6060d4b883f42116d1d9eb8c70e747777b421a73ea8bb4ee8aa3</citedby><cites>FETCH-LOGICAL-c325t-bd1d81aff362f6060d4b883f42116d1d9eb8c70e747777b421a73ea8bb4ee8aa3</cites><orcidid>0000-0003-4148-3160 ; 0000-0002-0953-6157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520305193$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ebrahimzadeh Hassanabadi, Mohsen</creatorcontrib><creatorcontrib>Heidarpour, Amin</creatorcontrib><creatorcontrib>Eftekhar Azam, Saeed</creatorcontrib><creatorcontrib>Arashpour, Mehrdad</creatorcontrib><title>Recursive principal component analysis for model order reduction with application in nonlinear Bayesian filtering</title><title>Computer methods in applied mechanics and engineering</title><description>Proper orthogonal decomposition (POD) is a useful technique for feature extraction, model order reduction and data compression and has been widely used in different science and engineering disciplines. Numerous papers have been published on the application of offline POD, i.e., batch POD (BPOD) in civil and mechanical engineering encompassing Karhunen–Loève decomposition (KLD), principal component analysis (PCA), and singular value decomposition (SVD). Nevertheless, online POD which is more suited for online feature extraction and monitoring has been scarcely addressed when dealing with civil and mechanical systems, particularly in structural dynamics. In this paper, a number of recursive POD (RPOD) methods in form of recursive PCA (RPCA) are overviewed with their application to structural dynamics. RPCA with numerical eigenvalue decomposition (EVD), incremental principal component analysis (IPCA), matrix perturbation method, and Kalman filter RPCA (KFRPCA) are presented; their performance is probed in terms of initialization, structural parameter modification, noisy observation, and alteration of loading statistics. The novel KFRPCA algorithm developed in this paper is reformulated to resolve the unobservability issue of higher modes which was present in its previous version in the published literature. Online stochastic output-only system identification is presented by synergizing RPCA with nonlinear Bayesian filter. Augmented extended Kalman filter (AEKF) is employed to perform unknown-input dual estimation. •Shortcomings of matrix perturbation method are underlined.•IPCA is shown to be superior to matrix perturbation method.•Higher modes observability issue of KFRPCA is resolved.•RPCAs robustness to initialization, noise, input, and parameter variation are assessed.•Unknown input system identification is dealt with using AEKF and RPCA.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Data compression</subject><subject>Decomposition</subject><subject>Dynamic structural analysis</subject><subject>Eigenvalues</subject><subject>Extended Kalman filter</subject><subject>Feature extraction</subject><subject>Kalman filters</subject><subject>Mechanical engineering</subject><subject>Mechanical systems</subject><subject>Model reduction</subject><subject>Model updating</subject><subject>Nonlinear Bayesian filter</subject><subject>Online model order reduction</subject><subject>Parameter modification</subject><subject>Perturbation methods</subject><subject>Principal components analysis</subject><subject>Proper Orthogonal Decomposition</subject><subject>Recursive principal component analysis (RPCA)</subject><subject>Singular value decomposition</subject><subject>System identification</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-AG8Bz13z6LYpnnTxBQuC6DmkyVRT2qSbtMp-e7PWs3MZ5vGfxw-hS0pWlNDiul3pXq0YYSmmnPP8CC2oKKuMUS6O0YKQfJ2Vgq1P0VmMLUkmKFug3SvoKUT7BXgI1mk7qA5r3w_egRuxcqrbRxtx4wPuvYEO-2Ag4ABm0qP1Dn_b8ROrYeisVr8J67DzrrMOVMB3ag_RKocb242QNnyco5NGdREu_vwSvT_cv22esu3L4_PmdptpztZjVhtqBFVNwwvWFKQgJq-F4E3OKC1SrYJa6JJAmZfJ6pRWJQcl6joHEErxJbqa5w7B7yaIo2z9FNI_UbK8IGVFRSVSF527dPAxBmhkwtCrsJeUyANZ2cpEVh7Iypls0tzMGkjnf1kIMmoLToOxAfQojbf_qH8AfHeDUA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ebrahimzadeh Hassanabadi, Mohsen</creator><creator>Heidarpour, Amin</creator><creator>Eftekhar Azam, Saeed</creator><creator>Arashpour, Mehrdad</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4148-3160</orcidid><orcidid>https://orcid.org/0000-0002-0953-6157</orcidid></search><sort><creationdate>20201101</creationdate><title>Recursive principal component analysis for model order reduction with application in nonlinear Bayesian filtering</title><author>Ebrahimzadeh Hassanabadi, Mohsen ; Heidarpour, Amin ; Eftekhar Azam, Saeed ; Arashpour, Mehrdad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-bd1d81aff362f6060d4b883f42116d1d9eb8c70e747777b421a73ea8bb4ee8aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Data compression</topic><topic>Decomposition</topic><topic>Dynamic structural analysis</topic><topic>Eigenvalues</topic><topic>Extended Kalman filter</topic><topic>Feature extraction</topic><topic>Kalman filters</topic><topic>Mechanical engineering</topic><topic>Mechanical systems</topic><topic>Model reduction</topic><topic>Model updating</topic><topic>Nonlinear Bayesian filter</topic><topic>Online model order reduction</topic><topic>Parameter modification</topic><topic>Perturbation methods</topic><topic>Principal components analysis</topic><topic>Proper Orthogonal Decomposition</topic><topic>Recursive principal component analysis (RPCA)</topic><topic>Singular value decomposition</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebrahimzadeh Hassanabadi, Mohsen</creatorcontrib><creatorcontrib>Heidarpour, Amin</creatorcontrib><creatorcontrib>Eftekhar Azam, Saeed</creatorcontrib><creatorcontrib>Arashpour, Mehrdad</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebrahimzadeh Hassanabadi, Mohsen</au><au>Heidarpour, Amin</au><au>Eftekhar Azam, Saeed</au><au>Arashpour, Mehrdad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive principal component analysis for model order reduction with application in nonlinear Bayesian filtering</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>371</volume><spage>113334</spage><pages>113334-</pages><artnum>113334</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>Proper orthogonal decomposition (POD) is a useful technique for feature extraction, model order reduction and data compression and has been widely used in different science and engineering disciplines. Numerous papers have been published on the application of offline POD, i.e., batch POD (BPOD) in civil and mechanical engineering encompassing Karhunen–Loève decomposition (KLD), principal component analysis (PCA), and singular value decomposition (SVD). Nevertheless, online POD which is more suited for online feature extraction and monitoring has been scarcely addressed when dealing with civil and mechanical systems, particularly in structural dynamics. In this paper, a number of recursive POD (RPOD) methods in form of recursive PCA (RPCA) are overviewed with their application to structural dynamics. RPCA with numerical eigenvalue decomposition (EVD), incremental principal component analysis (IPCA), matrix perturbation method, and Kalman filter RPCA (KFRPCA) are presented; their performance is probed in terms of initialization, structural parameter modification, noisy observation, and alteration of loading statistics. The novel KFRPCA algorithm developed in this paper is reformulated to resolve the unobservability issue of higher modes which was present in its previous version in the published literature. Online stochastic output-only system identification is presented by synergizing RPCA with nonlinear Bayesian filter. Augmented extended Kalman filter (AEKF) is employed to perform unknown-input dual estimation. •Shortcomings of matrix perturbation method are underlined.•IPCA is shown to be superior to matrix perturbation method.•Higher modes observability issue of KFRPCA is resolved.•RPCAs robustness to initialization, noise, input, and parameter variation are assessed.•Unknown input system identification is dealt with using AEKF and RPCA.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.113334</doi><orcidid>https://orcid.org/0000-0003-4148-3160</orcidid><orcidid>https://orcid.org/0000-0002-0953-6157</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-11, Vol.371, p.113334, Article 113334
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2460791898
source Elsevier ScienceDirect Journals
subjects Algorithms
Bayesian analysis
Data compression
Decomposition
Dynamic structural analysis
Eigenvalues
Extended Kalman filter
Feature extraction
Kalman filters
Mechanical engineering
Mechanical systems
Model reduction
Model updating
Nonlinear Bayesian filter
Online model order reduction
Parameter modification
Perturbation methods
Principal components analysis
Proper Orthogonal Decomposition
Recursive principal component analysis (RPCA)
Singular value decomposition
System identification
title Recursive principal component analysis for model order reduction with application in nonlinear Bayesian filtering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A08%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20principal%20component%20analysis%20for%20model%20order%20reduction%20with%20application%20in%20nonlinear%20Bayesian%20filtering&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Ebrahimzadeh%20Hassanabadi,%20Mohsen&rft.date=2020-11-01&rft.volume=371&rft.spage=113334&rft.pages=113334-&rft.artnum=113334&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.113334&rft_dat=%3Cproquest_cross%3E2460791898%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460791898&rft_id=info:pmid/&rft_els_id=S0045782520305193&rfr_iscdi=true