Data-Based Reconstruction of Chaotic Systems by Stochastic Iterative Greedy Algorithm
It is challenging to reconstruct a nonlinear dynamical system when sufficient observations are not available. Recent study shows this problem can be solved by paradigm of compressive sensing. In this paper, we study the reconstruction of chaotic systems based on the stochastic gradient matching purs...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Xiao, Yuzhu Song, Xueli Dong, Guoli |
description | It is challenging to reconstruct a nonlinear dynamical system when sufficient observations are not available. Recent study shows this problem can be solved by paradigm of compressive sensing. In this paper, we study the reconstruction of chaotic systems based on the stochastic gradient matching pursuit (StoGradMP) method. Comparing with the previous method based on convex optimization, the study results show that the StoGradMP method performs much better when the numerical sampling period is small. So the present study enables potential application of the reconstruction method using limited observations in some special situations where limited observations can be acquired in limited time. |
doi_str_mv | 10.1155/2020/6718304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460650339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460650339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-b880bd8e8c9ed008732c0cff08d864b62f9ec7fd84f99b032f782f3870b9ca2b3</originalsourceid><addsrcrecordid>eNqF0MFLwzAUBvAgCs7pzbMEPGrdS9I26XFuOgcDwTnwVtI0sR1bM5NM6X9vRwcePb3H48f34EPomsADIUkyokBhlHIiGMQnaECSlEUJiflptwONI0LZxzm68H4NQElCxACtpjLI6FF6XeI3rWzjg9urUNsGW4MnlbShVnjZ-qC3HhctXgarKukP13nQTob6W-OZ07ps8XjzaV0dqu0lOjNy4_XVcQ7R6vnpffISLV5n88l4ESlGeIgKIaAohRYq0yWA4IwqUMaAKEUaFyk1mVbclCI2WVYAo4YLapjgUGRK0oIN0W2fu3P2a699yNd275ruZU7jFNIEGMs6dd8r5az3Tpt85-qtdG1OID8Ulx-Ky4_Fdfyu51XdlPKn_k_f9Fp3Rhv5p0nGO8l-AU1Adyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460650339</pqid></control><display><type>article</type><title>Data-Based Reconstruction of Chaotic Systems by Stochastic Iterative Greedy Algorithm</title><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Xiao, Yuzhu ; Song, Xueli ; Dong, Guoli</creator><contributor>Kecik, Krzysztof ; Krzysztof Kecik</contributor><creatorcontrib>Xiao, Yuzhu ; Song, Xueli ; Dong, Guoli ; Kecik, Krzysztof ; Krzysztof Kecik</creatorcontrib><description>It is challenging to reconstruct a nonlinear dynamical system when sufficient observations are not available. Recent study shows this problem can be solved by paradigm of compressive sensing. In this paper, we study the reconstruction of chaotic systems based on the stochastic gradient matching pursuit (StoGradMP) method. Comparing with the previous method based on convex optimization, the study results show that the StoGradMP method performs much better when the numerical sampling period is small. So the present study enables potential application of the reconstruction method using limited observations in some special situations where limited observations can be acquired in limited time.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/6718304</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Chaos theory ; Computational geometry ; Convex analysis ; Convexity ; Dynamical systems ; Greedy algorithms ; Iterative methods ; Matched pursuit ; Mathematical problems ; Methods ; Optimization ; Parameter identification ; Reconstruction ; Sparsity ; Success</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-9</ispartof><rights>Copyright © 2020 Yuzhu Xiao et al.</rights><rights>Copyright © 2020 Yuzhu Xiao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-b880bd8e8c9ed008732c0cff08d864b62f9ec7fd84f99b032f782f3870b9ca2b3</cites><orcidid>0000-0002-5595-6590 ; 0000-0002-0664-5403</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Kecik, Krzysztof</contributor><contributor>Krzysztof Kecik</contributor><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><creatorcontrib>Dong, Guoli</creatorcontrib><title>Data-Based Reconstruction of Chaotic Systems by Stochastic Iterative Greedy Algorithm</title><title>Mathematical problems in engineering</title><description>It is challenging to reconstruct a nonlinear dynamical system when sufficient observations are not available. Recent study shows this problem can be solved by paradigm of compressive sensing. In this paper, we study the reconstruction of chaotic systems based on the stochastic gradient matching pursuit (StoGradMP) method. Comparing with the previous method based on convex optimization, the study results show that the StoGradMP method performs much better when the numerical sampling period is small. So the present study enables potential application of the reconstruction method using limited observations in some special situations where limited observations can be acquired in limited time.</description><subject>Algorithms</subject><subject>Chaos theory</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Dynamical systems</subject><subject>Greedy algorithms</subject><subject>Iterative methods</subject><subject>Matched pursuit</subject><subject>Mathematical problems</subject><subject>Methods</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Reconstruction</subject><subject>Sparsity</subject><subject>Success</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0MFLwzAUBvAgCs7pzbMEPGrdS9I26XFuOgcDwTnwVtI0sR1bM5NM6X9vRwcePb3H48f34EPomsADIUkyokBhlHIiGMQnaECSlEUJiflptwONI0LZxzm68H4NQElCxACtpjLI6FF6XeI3rWzjg9urUNsGW4MnlbShVnjZ-qC3HhctXgarKukP13nQTob6W-OZ07ps8XjzaV0dqu0lOjNy4_XVcQ7R6vnpffISLV5n88l4ESlGeIgKIaAohRYq0yWA4IwqUMaAKEUaFyk1mVbclCI2WVYAo4YLapjgUGRK0oIN0W2fu3P2a699yNd275ruZU7jFNIEGMs6dd8r5az3Tpt85-qtdG1OID8Ulx-Ky4_Fdfyu51XdlPKn_k_f9Fp3Rhv5p0nGO8l-AU1Adyk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xiao, Yuzhu</creator><creator>Song, Xueli</creator><creator>Dong, Guoli</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5595-6590</orcidid><orcidid>https://orcid.org/0000-0002-0664-5403</orcidid></search><sort><creationdate>2020</creationdate><title>Data-Based Reconstruction of Chaotic Systems by Stochastic Iterative Greedy Algorithm</title><author>Xiao, Yuzhu ; Song, Xueli ; Dong, Guoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-b880bd8e8c9ed008732c0cff08d864b62f9ec7fd84f99b032f782f3870b9ca2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chaos theory</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Dynamical systems</topic><topic>Greedy algorithms</topic><topic>Iterative methods</topic><topic>Matched pursuit</topic><topic>Mathematical problems</topic><topic>Methods</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Reconstruction</topic><topic>Sparsity</topic><topic>Success</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yuzhu</creatorcontrib><creatorcontrib>Song, Xueli</creatorcontrib><creatorcontrib>Dong, Guoli</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yuzhu</au><au>Song, Xueli</au><au>Dong, Guoli</au><au>Kecik, Krzysztof</au><au>Krzysztof Kecik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Based Reconstruction of Chaotic Systems by Stochastic Iterative Greedy Algorithm</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>It is challenging to reconstruct a nonlinear dynamical system when sufficient observations are not available. Recent study shows this problem can be solved by paradigm of compressive sensing. In this paper, we study the reconstruction of chaotic systems based on the stochastic gradient matching pursuit (StoGradMP) method. Comparing with the previous method based on convex optimization, the study results show that the StoGradMP method performs much better when the numerical sampling period is small. So the present study enables potential application of the reconstruction method using limited observations in some special situations where limited observations can be acquired in limited time.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6718304</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5595-6590</orcidid><orcidid>https://orcid.org/0000-0002-0664-5403</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-9 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2460650339 |
source | Wiley Open Access; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Algorithms Chaos theory Computational geometry Convex analysis Convexity Dynamical systems Greedy algorithms Iterative methods Matched pursuit Mathematical problems Methods Optimization Parameter identification Reconstruction Sparsity Success |
title | Data-Based Reconstruction of Chaotic Systems by Stochastic Iterative Greedy Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Based%20Reconstruction%20of%20Chaotic%20Systems%20by%20Stochastic%20Iterative%20Greedy%20Algorithm&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xiao,%20Yuzhu&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/6718304&rft_dat=%3Cproquest_cross%3E2460650339%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460650339&rft_id=info:pmid/&rfr_iscdi=true |