Fractional Fractals
This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study t...
Gespeichert in:
Veröffentlicht in: | Fractional calculus & applied analysis 2020-10, Vol.23 (5), p.1329-1348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1348 |
---|---|
container_issue | 5 |
container_start_page | 1329 |
container_title | Fractional calculus & applied analysis |
container_volume | 23 |
creator | Tenreiro Machado, J. A. Cao Labora, Daniel |
description | This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples.
MSC 2010
: Primary 26A33, 28A80 |
doi_str_mv | 10.1515/fca-2020-0066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460475672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460475672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</originalsourceid><addsrcrecordid>eNqFj81LAzEQxYMoWGpP4l3wnDqZTD4WvEixVSh40XNIs9nSUrs12SL97027ghfBubx3-L2ZeYzdCBgLJdR9EzxHQOAAWp-xgZCCOCLS-ckLDqToko1yXkMZixoqO2DX0-RDt2q3fnN7sn6Tr9hFUySOfnTI3qdPb5NnPn-dvUwe5zxIZTqu0JDwVUAtRcBovKqFsQ1aS1iDQl2bhqJUCwW6kkBQa2kX5NGHaIUlOWR3_d5daj_3MXdu3e5T-SQ7JA1klDZYKN5TIbU5p9i4XVp9-HRwAtyxuivV3bG6O1Yv_EPPf_lNF1Mdl2l_KOZ3-Z85lEpIrEp83MdzObNd_puT3xcxal8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460475672</pqid></control><display><type>article</type><title>Fractional Fractals</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Tenreiro Machado, J. A. ; Cao Labora, Daniel</creator><creatorcontrib>Tenreiro Machado, J. A. ; Cao Labora, Daniel</creatorcontrib><description>This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples.
MSC 2010
: Primary 26A33, 28A80</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2020-0066</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>28A80 ; Abstract Harmonic Analysis ; Analysis ; Fractals ; fractional calculus ; Functional Analysis ; Grünwald-Letnikov ; Integral Transforms ; iterated function system ; Mathematics ; Operational Calculus ; Primary 26A33 ; Research Paper</subject><ispartof>Fractional calculus & applied analysis, 2020-10, Vol.23 (5), p.1329-1348</ispartof><rights>Diogenes Co., Sofia 2020</rights><rights>2020 Diogenes Co., Sofia</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</citedby><cites>FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2020-0066$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2020-0066$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tenreiro Machado, J. A.</creatorcontrib><creatorcontrib>Cao Labora, Daniel</creatorcontrib><title>Fractional Fractals</title><title>Fractional calculus & applied analysis</title><addtitle>Fract Calc Appl Anal</addtitle><description>This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples.
MSC 2010
: Primary 26A33, 28A80</description><subject>28A80</subject><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Fractals</subject><subject>fractional calculus</subject><subject>Functional Analysis</subject><subject>Grünwald-Letnikov</subject><subject>Integral Transforms</subject><subject>iterated function system</subject><subject>Mathematics</subject><subject>Operational Calculus</subject><subject>Primary 26A33</subject><subject>Research Paper</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFj81LAzEQxYMoWGpP4l3wnDqZTD4WvEixVSh40XNIs9nSUrs12SL97027ghfBubx3-L2ZeYzdCBgLJdR9EzxHQOAAWp-xgZCCOCLS-ckLDqToko1yXkMZixoqO2DX0-RDt2q3fnN7sn6Tr9hFUySOfnTI3qdPb5NnPn-dvUwe5zxIZTqu0JDwVUAtRcBovKqFsQ1aS1iDQl2bhqJUCwW6kkBQa2kX5NGHaIUlOWR3_d5daj_3MXdu3e5T-SQ7JA1klDZYKN5TIbU5p9i4XVp9-HRwAtyxuivV3bG6O1Yv_EPPf_lNF1Mdl2l_KOZ3-Z85lEpIrEp83MdzObNd_puT3xcxal8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tenreiro Machado, J. A.</creator><creator>Cao Labora, Daniel</creator><general>Versita</general><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201001</creationdate><title>Fractional Fractals</title><author>Tenreiro Machado, J. A. ; Cao Labora, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>28A80</topic><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Fractals</topic><topic>fractional calculus</topic><topic>Functional Analysis</topic><topic>Grünwald-Letnikov</topic><topic>Integral Transforms</topic><topic>iterated function system</topic><topic>Mathematics</topic><topic>Operational Calculus</topic><topic>Primary 26A33</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenreiro Machado, J. A.</creatorcontrib><creatorcontrib>Cao Labora, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fractional calculus & applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenreiro Machado, J. A.</au><au>Cao Labora, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Fractals</atitle><jtitle>Fractional calculus & applied analysis</jtitle><stitle>Fract Calc Appl Anal</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>23</volume><issue>5</issue><spage>1329</spage><epage>1348</epage><pages>1329-1348</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples.
MSC 2010
: Primary 26A33, 28A80</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2020-0066</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1311-0454 |
ispartof | Fractional calculus & applied analysis, 2020-10, Vol.23 (5), p.1329-1348 |
issn | 1311-0454 1314-2224 |
language | eng |
recordid | cdi_proquest_journals_2460475672 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | 28A80 Abstract Harmonic Analysis Analysis Fractals fractional calculus Functional Analysis Grünwald-Letnikov Integral Transforms iterated function system Mathematics Operational Calculus Primary 26A33 Research Paper |
title | Fractional Fractals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Fractals&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Tenreiro%20Machado,%20J.%20A.&rft.date=2020-10-01&rft.volume=23&rft.issue=5&rft.spage=1329&rft.epage=1348&rft.pages=1329-1348&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2020-0066&rft_dat=%3Cproquest_cross%3E2460475672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460475672&rft_id=info:pmid/&rfr_iscdi=true |