Fractional Fractals

This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2020-10, Vol.23 (5), p.1329-1348
Hauptverfasser: Tenreiro Machado, J. A., Cao Labora, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1348
container_issue 5
container_start_page 1329
container_title Fractional calculus & applied analysis
container_volume 23
creator Tenreiro Machado, J. A.
Cao Labora, Daniel
description This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples. MSC 2010 : Primary 26A33, 28A80
doi_str_mv 10.1515/fca-2020-0066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460475672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460475672</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</originalsourceid><addsrcrecordid>eNqFj81LAzEQxYMoWGpP4l3wnDqZTD4WvEixVSh40XNIs9nSUrs12SL97027ghfBubx3-L2ZeYzdCBgLJdR9EzxHQOAAWp-xgZCCOCLS-ckLDqToko1yXkMZixoqO2DX0-RDt2q3fnN7sn6Tr9hFUySOfnTI3qdPb5NnPn-dvUwe5zxIZTqu0JDwVUAtRcBovKqFsQ1aS1iDQl2bhqJUCwW6kkBQa2kX5NGHaIUlOWR3_d5daj_3MXdu3e5T-SQ7JA1klDZYKN5TIbU5p9i4XVp9-HRwAtyxuivV3bG6O1Yv_EPPf_lNF1Mdl2l_KOZ3-Z85lEpIrEp83MdzObNd_puT3xcxal8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460475672</pqid></control><display><type>article</type><title>Fractional Fractals</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Tenreiro Machado, J. A. ; Cao Labora, Daniel</creator><creatorcontrib>Tenreiro Machado, J. A. ; Cao Labora, Daniel</creatorcontrib><description>This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples. MSC 2010 : Primary 26A33, 28A80</description><identifier>ISSN: 1311-0454</identifier><identifier>EISSN: 1314-2224</identifier><identifier>DOI: 10.1515/fca-2020-0066</identifier><language>eng</language><publisher>Warsaw: Versita</publisher><subject>28A80 ; Abstract Harmonic Analysis ; Analysis ; Fractals ; fractional calculus ; Functional Analysis ; Grünwald-Letnikov ; Integral Transforms ; iterated function system ; Mathematics ; Operational Calculus ; Primary 26A33 ; Research Paper</subject><ispartof>Fractional calculus &amp; applied analysis, 2020-10, Vol.23 (5), p.1329-1348</ispartof><rights>Diogenes Co., Sofia 2020</rights><rights>2020 Diogenes Co., Sofia</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</citedby><cites>FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1515/fca-2020-0066$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1515/fca-2020-0066$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tenreiro Machado, J. A.</creatorcontrib><creatorcontrib>Cao Labora, Daniel</creatorcontrib><title>Fractional Fractals</title><title>Fractional calculus &amp; applied analysis</title><addtitle>Fract Calc Appl Anal</addtitle><description>This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples. MSC 2010 : Primary 26A33, 28A80</description><subject>28A80</subject><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Fractals</subject><subject>fractional calculus</subject><subject>Functional Analysis</subject><subject>Grünwald-Letnikov</subject><subject>Integral Transforms</subject><subject>iterated function system</subject><subject>Mathematics</subject><subject>Operational Calculus</subject><subject>Primary 26A33</subject><subject>Research Paper</subject><issn>1311-0454</issn><issn>1314-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFj81LAzEQxYMoWGpP4l3wnDqZTD4WvEixVSh40XNIs9nSUrs12SL97027ghfBubx3-L2ZeYzdCBgLJdR9EzxHQOAAWp-xgZCCOCLS-ckLDqToko1yXkMZixoqO2DX0-RDt2q3fnN7sn6Tr9hFUySOfnTI3qdPb5NnPn-dvUwe5zxIZTqu0JDwVUAtRcBovKqFsQ1aS1iDQl2bhqJUCwW6kkBQa2kX5NGHaIUlOWR3_d5daj_3MXdu3e5T-SQ7JA1klDZYKN5TIbU5p9i4XVp9-HRwAtyxuivV3bG6O1Yv_EPPf_lNF1Mdl2l_KOZ3-Z85lEpIrEp83MdzObNd_puT3xcxal8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tenreiro Machado, J. A.</creator><creator>Cao Labora, Daniel</creator><general>Versita</general><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201001</creationdate><title>Fractional Fractals</title><author>Tenreiro Machado, J. A. ; Cao Labora, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-52741a9c2631c2e7a5d178f28842d0526d7f4e35b50693040d638b4a2ace81843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>28A80</topic><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Fractals</topic><topic>fractional calculus</topic><topic>Functional Analysis</topic><topic>Grünwald-Letnikov</topic><topic>Integral Transforms</topic><topic>iterated function system</topic><topic>Mathematics</topic><topic>Operational Calculus</topic><topic>Primary 26A33</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenreiro Machado, J. A.</creatorcontrib><creatorcontrib>Cao Labora, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fractional calculus &amp; applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenreiro Machado, J. A.</au><au>Cao Labora, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional Fractals</atitle><jtitle>Fractional calculus &amp; applied analysis</jtitle><stitle>Fract Calc Appl Anal</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>23</volume><issue>5</issue><spage>1329</spage><epage>1348</epage><pages>1329-1348</pages><issn>1311-0454</issn><eissn>1314-2224</eissn><abstract>This paper introduces the notion of “fractional fractals”. The main idea is to establish a connection between the classical iterated function system and the first order truncation of the Grndwald-Letnikov fractional derivative. This allows us to consider higher order truncations, and also to study the limit sets for these higher order systems. We prove several results involving the existence and dimension of such limit sets, that will be called “fractional fractals”. Some numerical calculations and representations illustrate relevant examples. MSC 2010 : Primary 26A33, 28A80</abstract><cop>Warsaw</cop><pub>Versita</pub><doi>10.1515/fca-2020-0066</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1311-0454
ispartof Fractional calculus & applied analysis, 2020-10, Vol.23 (5), p.1329-1348
issn 1311-0454
1314-2224
language eng
recordid cdi_proquest_journals_2460475672
source SpringerNature Journals; Alma/SFX Local Collection
subjects 28A80
Abstract Harmonic Analysis
Analysis
Fractals
fractional calculus
Functional Analysis
Grünwald-Letnikov
Integral Transforms
iterated function system
Mathematics
Operational Calculus
Primary 26A33
Research Paper
title Fractional Fractals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A18%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20Fractals&rft.jtitle=Fractional%20calculus%20&%20applied%20analysis&rft.au=Tenreiro%20Machado,%20J.%20A.&rft.date=2020-10-01&rft.volume=23&rft.issue=5&rft.spage=1329&rft.epage=1348&rft.pages=1329-1348&rft.issn=1311-0454&rft.eissn=1314-2224&rft_id=info:doi/10.1515/fca-2020-0066&rft_dat=%3Cproquest_cross%3E2460475672%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460475672&rft_id=info:pmid/&rfr_iscdi=true