Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation

Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.196160-196174
Hauptverfasser: Nurmaini, Siti, Rachmatullah, Muhammad Naufal, Sapitri, Ade Iriani, Darmawahyuni, Annisa, Jovandy, Adithia, Firdaus, Firdaus, Tutuko, Bambang, Passarella, Rossi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196174
container_issue
container_start_page 196160
container_title IEEE access
container_volume 8
creator Nurmaini, Siti
Rachmatullah, Muhammad Naufal
Sapitri, Ade Iriani
Darmawahyuni, Annisa
Jovandy, Adithia
Firdaus, Firdaus
Tutuko, Bambang
Passarella, Rossi
description Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.
doi_str_mv 10.1109/ACCESS.2020.3034367
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2460153282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241786</ieee_id><doaj_id>oai_doaj_org_article_4f223e337f70452eabb0de11fd8f7468</doaj_id><sourcerecordid>2460153282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</originalsourceid><addsrcrecordid>eNpNkc1u1DAUhSMEElXpE3RjiXUG_8V2lsPQwkiDWAwjltaNc5NmlImD7Vl0yZvjkKrCG9ufzjn3Sqco7hndMEbrT9vd7uF43HDK6UZQIYXSb4obzlRdikqot_-93xd3MZ5pPiajSt8Uf7bOXQMkJF8woUuDn4jvyBHnBGNmXWaR_BrSE3nEBZ3GFCD6yfcB5qdnsr9Aj5Gc4jD1WY8zOSCEKf_KzxCxJd-vYxrcCDGS_RQTTA5zfH_BKcEy7kPxroMx4t3LfVucHh9-7r6Vhx9f97vtoXSSmlQKLThWuql40whQktaqltyg04IBUGDOUK5a6gSrmpqblrNGMaSqMUJnubgt9mtu6-Fs5zBcIDxbD4P9B3zoLYRlU7Sy41ygELrTVFYcoWloi4x1rem0VCZnfVyz5uB_XzEme_bXMOX1LZeKskpww7NKrCoXfIwBu9epjNqlOrtWZ5fq7Et12XW_ugZEfHXUXDJtlPgLbIeUlQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460153282</pqid></control><display><type>article</type><title>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nurmaini, Siti ; Rachmatullah, Muhammad Naufal ; Sapitri, Ade Iriani ; Darmawahyuni, Annisa ; Jovandy, Adithia ; Firdaus, Firdaus ; Tutuko, Bambang ; Passarella, Rossi</creator><creatorcontrib>Nurmaini, Siti ; Rachmatullah, Muhammad Naufal ; Sapitri, Ade Iriani ; Darmawahyuni, Annisa ; Jovandy, Adithia ; Firdaus, Firdaus ; Tutuko, Bambang ; Passarella, Rossi</creatorcontrib><description>Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3034367</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aorta ; Atria ; Congenital heart disease ; Coronary vessels ; Deep learning ; Defects ; Echocardiography ; fetal echocardiography ; Fetal heart ; Ground truth ; Heart ; Heart diseases ; Image segmentation ; Instance segmentation ; mask-RCNN ; Medical imaging ; multiclass instance segmentation ; Object detection ; Object recognition ; Semantic segmentation ; Semantics ; septal defects ; Ultrasonic imaging ; Ultrasonography</subject><ispartof>IEEE access, 2020, Vol.8, p.196160-196174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</citedby><cites>FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</cites><orcidid>0000-0002-2051-8988 ; 0000-0003-3553-3475 ; 0000-0003-2791-3486 ; 0000-0002-8024-2952 ; 0000-0002-0229-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241786$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nurmaini, Siti</creatorcontrib><creatorcontrib>Rachmatullah, Muhammad Naufal</creatorcontrib><creatorcontrib>Sapitri, Ade Iriani</creatorcontrib><creatorcontrib>Darmawahyuni, Annisa</creatorcontrib><creatorcontrib>Jovandy, Adithia</creatorcontrib><creatorcontrib>Firdaus, Firdaus</creatorcontrib><creatorcontrib>Tutuko, Bambang</creatorcontrib><creatorcontrib>Passarella, Rossi</creatorcontrib><title>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.</description><subject>Aorta</subject><subject>Atria</subject><subject>Congenital heart disease</subject><subject>Coronary vessels</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Echocardiography</subject><subject>fetal echocardiography</subject><subject>Fetal heart</subject><subject>Ground truth</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>mask-RCNN</subject><subject>Medical imaging</subject><subject>multiclass instance segmentation</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>septal defects</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1u1DAUhSMEElXpE3RjiXUG_8V2lsPQwkiDWAwjltaNc5NmlImD7Vl0yZvjkKrCG9ufzjn3Sqco7hndMEbrT9vd7uF43HDK6UZQIYXSb4obzlRdikqot_-93xd3MZ5pPiajSt8Uf7bOXQMkJF8woUuDn4jvyBHnBGNmXWaR_BrSE3nEBZ3GFCD6yfcB5qdnsr9Aj5Gc4jD1WY8zOSCEKf_KzxCxJd-vYxrcCDGS_RQTTA5zfH_BKcEy7kPxroMx4t3LfVucHh9-7r6Vhx9f97vtoXSSmlQKLThWuql40whQktaqltyg04IBUGDOUK5a6gSrmpqblrNGMaSqMUJnubgt9mtu6-Fs5zBcIDxbD4P9B3zoLYRlU7Sy41ygELrTVFYcoWloi4x1rem0VCZnfVyz5uB_XzEme_bXMOX1LZeKskpww7NKrCoXfIwBu9epjNqlOrtWZ5fq7Et12XW_ugZEfHXUXDJtlPgLbIeUlQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nurmaini, Siti</creator><creator>Rachmatullah, Muhammad Naufal</creator><creator>Sapitri, Ade Iriani</creator><creator>Darmawahyuni, Annisa</creator><creator>Jovandy, Adithia</creator><creator>Firdaus, Firdaus</creator><creator>Tutuko, Bambang</creator><creator>Passarella, Rossi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2051-8988</orcidid><orcidid>https://orcid.org/0000-0003-3553-3475</orcidid><orcidid>https://orcid.org/0000-0003-2791-3486</orcidid><orcidid>https://orcid.org/0000-0002-8024-2952</orcidid><orcidid>https://orcid.org/0000-0002-0229-5717</orcidid></search><sort><creationdate>2020</creationdate><title>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</title><author>Nurmaini, Siti ; Rachmatullah, Muhammad Naufal ; Sapitri, Ade Iriani ; Darmawahyuni, Annisa ; Jovandy, Adithia ; Firdaus, Firdaus ; Tutuko, Bambang ; Passarella, Rossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aorta</topic><topic>Atria</topic><topic>Congenital heart disease</topic><topic>Coronary vessels</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Echocardiography</topic><topic>fetal echocardiography</topic><topic>Fetal heart</topic><topic>Ground truth</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>mask-RCNN</topic><topic>Medical imaging</topic><topic>multiclass instance segmentation</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>septal defects</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurmaini, Siti</creatorcontrib><creatorcontrib>Rachmatullah, Muhammad Naufal</creatorcontrib><creatorcontrib>Sapitri, Ade Iriani</creatorcontrib><creatorcontrib>Darmawahyuni, Annisa</creatorcontrib><creatorcontrib>Jovandy, Adithia</creatorcontrib><creatorcontrib>Firdaus, Firdaus</creatorcontrib><creatorcontrib>Tutuko, Bambang</creatorcontrib><creatorcontrib>Passarella, Rossi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurmaini, Siti</au><au>Rachmatullah, Muhammad Naufal</au><au>Sapitri, Ade Iriani</au><au>Darmawahyuni, Annisa</au><au>Jovandy, Adithia</au><au>Firdaus, Firdaus</au><au>Tutuko, Bambang</au><au>Passarella, Rossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>196160</spage><epage>196174</epage><pages>196160-196174</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3034367</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2051-8988</orcidid><orcidid>https://orcid.org/0000-0003-3553-3475</orcidid><orcidid>https://orcid.org/0000-0003-2791-3486</orcidid><orcidid>https://orcid.org/0000-0002-8024-2952</orcidid><orcidid>https://orcid.org/0000-0002-0229-5717</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.196160-196174
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2460153282
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Aorta
Atria
Congenital heart disease
Coronary vessels
Deep learning
Defects
Echocardiography
fetal echocardiography
Fetal heart
Ground truth
Heart
Heart diseases
Image segmentation
Instance segmentation
mask-RCNN
Medical imaging
multiclass instance segmentation
Object detection
Object recognition
Semantic segmentation
Semantics
septal defects
Ultrasonic imaging
Ultrasonography
title Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Detection%20of%20Septal%20Defects%20With%20Fetal%20Ultrasonography%20Images%20Using%20Deep%20Learning-Based%20Multiclass%20Instance%20Segmentation&rft.jtitle=IEEE%20access&rft.au=Nurmaini,%20Siti&rft.date=2020&rft.volume=8&rft.spage=196160&rft.epage=196174&rft.pages=196160-196174&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3034367&rft_dat=%3Cproquest_ieee_%3E2460153282%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460153282&rft_id=info:pmid/&rft_ieee_id=9241786&rft_doaj_id=oai_doaj_org_article_4f223e337f70452eabb0de11fd8f7468&rfr_iscdi=true