Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation
Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.196160-196174 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196174 |
---|---|
container_issue | |
container_start_page | 196160 |
container_title | IEEE access |
container_volume | 8 |
creator | Nurmaini, Siti Rachmatullah, Muhammad Naufal Sapitri, Ade Iriani Darmawahyuni, Annisa Jovandy, Adithia Firdaus, Firdaus Tutuko, Bambang Passarella, Rossi |
description | Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease. |
doi_str_mv | 10.1109/ACCESS.2020.3034367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2460153282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9241786</ieee_id><doaj_id>oai_doaj_org_article_4f223e337f70452eabb0de11fd8f7468</doaj_id><sourcerecordid>2460153282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</originalsourceid><addsrcrecordid>eNpNkc1u1DAUhSMEElXpE3RjiXUG_8V2lsPQwkiDWAwjltaNc5NmlImD7Vl0yZvjkKrCG9ufzjn3Sqco7hndMEbrT9vd7uF43HDK6UZQIYXSb4obzlRdikqot_-93xd3MZ5pPiajSt8Uf7bOXQMkJF8woUuDn4jvyBHnBGNmXWaR_BrSE3nEBZ3GFCD6yfcB5qdnsr9Aj5Gc4jD1WY8zOSCEKf_KzxCxJd-vYxrcCDGS_RQTTA5zfH_BKcEy7kPxroMx4t3LfVucHh9-7r6Vhx9f97vtoXSSmlQKLThWuql40whQktaqltyg04IBUGDOUK5a6gSrmpqblrNGMaSqMUJnubgt9mtu6-Fs5zBcIDxbD4P9B3zoLYRlU7Sy41ygELrTVFYcoWloi4x1rem0VCZnfVyz5uB_XzEme_bXMOX1LZeKskpww7NKrCoXfIwBu9epjNqlOrtWZ5fq7Et12XW_ugZEfHXUXDJtlPgLbIeUlQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460153282</pqid></control><display><type>article</type><title>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Nurmaini, Siti ; Rachmatullah, Muhammad Naufal ; Sapitri, Ade Iriani ; Darmawahyuni, Annisa ; Jovandy, Adithia ; Firdaus, Firdaus ; Tutuko, Bambang ; Passarella, Rossi</creator><creatorcontrib>Nurmaini, Siti ; Rachmatullah, Muhammad Naufal ; Sapitri, Ade Iriani ; Darmawahyuni, Annisa ; Jovandy, Adithia ; Firdaus, Firdaus ; Tutuko, Bambang ; Passarella, Rossi</creatorcontrib><description>Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3034367</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aorta ; Atria ; Congenital heart disease ; Coronary vessels ; Deep learning ; Defects ; Echocardiography ; fetal echocardiography ; Fetal heart ; Ground truth ; Heart ; Heart diseases ; Image segmentation ; Instance segmentation ; mask-RCNN ; Medical imaging ; multiclass instance segmentation ; Object detection ; Object recognition ; Semantic segmentation ; Semantics ; septal defects ; Ultrasonic imaging ; Ultrasonography</subject><ispartof>IEEE access, 2020, Vol.8, p.196160-196174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</citedby><cites>FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</cites><orcidid>0000-0002-2051-8988 ; 0000-0003-3553-3475 ; 0000-0003-2791-3486 ; 0000-0002-8024-2952 ; 0000-0002-0229-5717</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9241786$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Nurmaini, Siti</creatorcontrib><creatorcontrib>Rachmatullah, Muhammad Naufal</creatorcontrib><creatorcontrib>Sapitri, Ade Iriani</creatorcontrib><creatorcontrib>Darmawahyuni, Annisa</creatorcontrib><creatorcontrib>Jovandy, Adithia</creatorcontrib><creatorcontrib>Firdaus, Firdaus</creatorcontrib><creatorcontrib>Tutuko, Bambang</creatorcontrib><creatorcontrib>Passarella, Rossi</creatorcontrib><title>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.</description><subject>Aorta</subject><subject>Atria</subject><subject>Congenital heart disease</subject><subject>Coronary vessels</subject><subject>Deep learning</subject><subject>Defects</subject><subject>Echocardiography</subject><subject>fetal echocardiography</subject><subject>Fetal heart</subject><subject>Ground truth</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Image segmentation</subject><subject>Instance segmentation</subject><subject>mask-RCNN</subject><subject>Medical imaging</subject><subject>multiclass instance segmentation</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>septal defects</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1u1DAUhSMEElXpE3RjiXUG_8V2lsPQwkiDWAwjltaNc5NmlImD7Vl0yZvjkKrCG9ufzjn3Sqco7hndMEbrT9vd7uF43HDK6UZQIYXSb4obzlRdikqot_-93xd3MZ5pPiajSt8Uf7bOXQMkJF8woUuDn4jvyBHnBGNmXWaR_BrSE3nEBZ3GFCD6yfcB5qdnsr9Aj5Gc4jD1WY8zOSCEKf_KzxCxJd-vYxrcCDGS_RQTTA5zfH_BKcEy7kPxroMx4t3LfVucHh9-7r6Vhx9f97vtoXSSmlQKLThWuql40whQktaqltyg04IBUGDOUK5a6gSrmpqblrNGMaSqMUJnubgt9mtu6-Fs5zBcIDxbD4P9B3zoLYRlU7Sy41ygELrTVFYcoWloi4x1rem0VCZnfVyz5uB_XzEme_bXMOX1LZeKskpww7NKrCoXfIwBu9epjNqlOrtWZ5fq7Et12XW_ugZEfHXUXDJtlPgLbIeUlQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Nurmaini, Siti</creator><creator>Rachmatullah, Muhammad Naufal</creator><creator>Sapitri, Ade Iriani</creator><creator>Darmawahyuni, Annisa</creator><creator>Jovandy, Adithia</creator><creator>Firdaus, Firdaus</creator><creator>Tutuko, Bambang</creator><creator>Passarella, Rossi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2051-8988</orcidid><orcidid>https://orcid.org/0000-0003-3553-3475</orcidid><orcidid>https://orcid.org/0000-0003-2791-3486</orcidid><orcidid>https://orcid.org/0000-0002-8024-2952</orcidid><orcidid>https://orcid.org/0000-0002-0229-5717</orcidid></search><sort><creationdate>2020</creationdate><title>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</title><author>Nurmaini, Siti ; Rachmatullah, Muhammad Naufal ; Sapitri, Ade Iriani ; Darmawahyuni, Annisa ; Jovandy, Adithia ; Firdaus, Firdaus ; Tutuko, Bambang ; Passarella, Rossi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3732e57b52bb3a640969428ec731aa0a1c8026d0c315b928d21b61e06b8376403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aorta</topic><topic>Atria</topic><topic>Congenital heart disease</topic><topic>Coronary vessels</topic><topic>Deep learning</topic><topic>Defects</topic><topic>Echocardiography</topic><topic>fetal echocardiography</topic><topic>Fetal heart</topic><topic>Ground truth</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Image segmentation</topic><topic>Instance segmentation</topic><topic>mask-RCNN</topic><topic>Medical imaging</topic><topic>multiclass instance segmentation</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>septal defects</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nurmaini, Siti</creatorcontrib><creatorcontrib>Rachmatullah, Muhammad Naufal</creatorcontrib><creatorcontrib>Sapitri, Ade Iriani</creatorcontrib><creatorcontrib>Darmawahyuni, Annisa</creatorcontrib><creatorcontrib>Jovandy, Adithia</creatorcontrib><creatorcontrib>Firdaus, Firdaus</creatorcontrib><creatorcontrib>Tutuko, Bambang</creatorcontrib><creatorcontrib>Passarella, Rossi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nurmaini, Siti</au><au>Rachmatullah, Muhammad Naufal</au><au>Sapitri, Ade Iriani</au><au>Darmawahyuni, Annisa</au><au>Jovandy, Adithia</au><au>Firdaus, Firdaus</au><au>Tutuko, Bambang</au><au>Passarella, Rossi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>196160</spage><epage>196174</epage><pages>196160-196174</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate screening for septal defects is important for supporting radiologists' interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3034367</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2051-8988</orcidid><orcidid>https://orcid.org/0000-0003-3553-3475</orcidid><orcidid>https://orcid.org/0000-0003-2791-3486</orcidid><orcidid>https://orcid.org/0000-0002-8024-2952</orcidid><orcidid>https://orcid.org/0000-0002-0229-5717</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.196160-196174 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2460153282 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Aorta Atria Congenital heart disease Coronary vessels Deep learning Defects Echocardiography fetal echocardiography Fetal heart Ground truth Heart Heart diseases Image segmentation Instance segmentation mask-RCNN Medical imaging multiclass instance segmentation Object detection Object recognition Semantic segmentation Semantics septal defects Ultrasonic imaging Ultrasonography |
title | Accurate Detection of Septal Defects With Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Detection%20of%20Septal%20Defects%20With%20Fetal%20Ultrasonography%20Images%20Using%20Deep%20Learning-Based%20Multiclass%20Instance%20Segmentation&rft.jtitle=IEEE%20access&rft.au=Nurmaini,%20Siti&rft.date=2020&rft.volume=8&rft.spage=196160&rft.epage=196174&rft.pages=196160-196174&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3034367&rft_dat=%3Cproquest_ieee_%3E2460153282%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460153282&rft_id=info:pmid/&rft_ieee_id=9241786&rft_doaj_id=oai_doaj_org_article_4f223e337f70452eabb0de11fd8f7468&rfr_iscdi=true |