Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue
A dielectric modulated (DM) dual-sided dopingless (DL) GaAs 0.5 Sb 0.5 /In 0 . 53 Ga 0 . 47 As hetero-junction (HJ) Tunnel FET (DM-DDL-HTFET) based label-free biosensor architecture having hetero-gate-dielectric (HGD) has been offered. Here, virtual pocket of N + -category with differing electronic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2020, Vol.19, p.769-777 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 777 |
---|---|
container_issue | |
container_start_page | 769 |
container_title | IEEE transactions on nanotechnology |
container_volume | 19 |
creator | Bhattacharyya, Amit Chanda, Manash De, Debashis |
description | A dielectric modulated (DM) dual-sided dopingless (DL) GaAs 0.5 Sb 0.5 /In 0 . 53 Ga 0 . 47 As hetero-junction (HJ) Tunnel FET (DM-DDL-HTFET) based label-free biosensor architecture having hetero-gate-dielectric (HGD) has been offered. Here, virtual pocket of N + -category with differing electronic concentration (N e ) has been realized through the adjustment of source-sided-channel length (L SC ) below the gate region. Primarily, the optimized structure has been investigated considering energy-band gap, mole fraction of HJ material and gate-to-source spacer thickness (L gap,S ). Next, the efficiency of optimized DDL-HTFET model excluding nano-gap has been juxtaposed with the Si-based TFET contenders. The effect on N e , surface potential (ψ), drain-current (I DS ), and their equivalent sensitivity have been analyzed by the ATLAS device simulator considering the steric hindrance issues. 37.54% and 54% improvement in threshold voltage sensitivity can be obtained for DM-DDL-HTFET over single side DL-SiTFET (DM-SDL-SiTFET) due to variation of oxide layer thickness (T ox ) and source-side dielectric material respectively. Moreover, DM-DDL-HTFET offers 58.64% (42.18%) and 44.44% (73.33%) inferior minimum noise figure and noise conductance over DM-SDL-SiTFET at 50 (250) GHz frequency correspondingly after immobilization of APTES biomolecules. |
doi_str_mv | 10.1109/TNANO.2020.3033966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2460153254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9239979</ieee_id><sourcerecordid>2460153254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-45fb2bf71e430bdc361fdcb9331ec0c8794385f1b41d0cf90e12027658c6e93</originalsourceid><addsrcrecordid>eNo9kDtPwzAURi0EEqXwB2CxxJziR5zEYymPVqpaJDqwWYlzjVylcbGTIfx63IeY7OGcK30HoXtKJpQS-bRZTVfrCSOMTDjhXGbZBRpRmdKEkEJcxr_gWUKZ-LpGNyFsCaF5JooR0tO2bIZgA3YGr5wNkCx2u74F_OL2tv1uIAQ8hw682_at7qxr8bN1yebtdYNnrg22Bh85_FH6zpYNng-Vt7X9LY_oIoQebtGVKZsAd-d3jD6jPZsny_X7YjZdJppJ0SWpMBWrTE4h5aSqNc-oqXUlOaegiS5ymfJCGFqltCbaSAI0Dj7M0BlIPkaPp6t77356CJ3aut7HdUGxNCMxABNppNiJ0t6F4MGovbe70g-KEnVIqY4p1SGlOqeM0sNJsgDwL0jGpcwl_wPryHCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460153254</pqid></control><display><type>article</type><title>Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue</title><source>IEL</source><creator>Bhattacharyya, Amit ; Chanda, Manash ; De, Debashis</creator><creatorcontrib>Bhattacharyya, Amit ; Chanda, Manash ; De, Debashis</creatorcontrib><description>A dielectric modulated (DM) dual-sided dopingless (DL) GaAs 0.5 Sb 0.5 /In 0 . 53 Ga 0 . 47 As hetero-junction (HJ) Tunnel FET (DM-DDL-HTFET) based label-free biosensor architecture having hetero-gate-dielectric (HGD) has been offered. Here, virtual pocket of N + -category with differing electronic concentration (N e ) has been realized through the adjustment of source-sided-channel length (L SC ) below the gate region. Primarily, the optimized structure has been investigated considering energy-band gap, mole fraction of HJ material and gate-to-source spacer thickness (L gap,S ). Next, the efficiency of optimized DDL-HTFET model excluding nano-gap has been juxtaposed with the Si-based TFET contenders. The effect on N e , surface potential (ψ), drain-current (I DS ), and their equivalent sensitivity have been analyzed by the ATLAS device simulator considering the steric hindrance issues. 37.54% and 54% improvement in threshold voltage sensitivity can be obtained for DM-DDL-HTFET over single side DL-SiTFET (DM-SDL-SiTFET) due to variation of oxide layer thickness (T ox ) and source-side dielectric material respectively. Moreover, DM-DDL-HTFET offers 58.64% (42.18%) and 44.44% (73.33%) inferior minimum noise figure and noise conductance over DM-SDL-SiTFET at 50 (250) GHz frequency correspondingly after immobilization of APTES biomolecules.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2020.3033966</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Biomolecules ; Biosensors ; dielectric modulation ; Dielectrics ; doping-less ; Energy gap ; hetero-structure ; Heterojunctions ; Ions ; Label-free biosensing ; Logic gates ; minimum noise figure ; Noise ; Resistance ; Sensitivity ; Sensitivity analysis ; Steric hindrance ; TFETs ; Thickness ; Threshold voltage ; Tunneling</subject><ispartof>IEEE transactions on nanotechnology, 2020, Vol.19, p.769-777</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-45fb2bf71e430bdc361fdcb9331ec0c8794385f1b41d0cf90e12027658c6e93</citedby><cites>FETCH-LOGICAL-c295t-45fb2bf71e430bdc361fdcb9331ec0c8794385f1b41d0cf90e12027658c6e93</cites><orcidid>0000-0002-9659-9737 ; 0000-0002-9688-9806 ; 0000-0002-6914-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9239979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9239979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bhattacharyya, Amit</creatorcontrib><creatorcontrib>Chanda, Manash</creatorcontrib><creatorcontrib>De, Debashis</creatorcontrib><title>Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>A dielectric modulated (DM) dual-sided dopingless (DL) GaAs 0.5 Sb 0.5 /In 0 . 53 Ga 0 . 47 As hetero-junction (HJ) Tunnel FET (DM-DDL-HTFET) based label-free biosensor architecture having hetero-gate-dielectric (HGD) has been offered. Here, virtual pocket of N + -category with differing electronic concentration (N e ) has been realized through the adjustment of source-sided-channel length (L SC ) below the gate region. Primarily, the optimized structure has been investigated considering energy-band gap, mole fraction of HJ material and gate-to-source spacer thickness (L gap,S ). Next, the efficiency of optimized DDL-HTFET model excluding nano-gap has been juxtaposed with the Si-based TFET contenders. The effect on N e , surface potential (ψ), drain-current (I DS ), and their equivalent sensitivity have been analyzed by the ATLAS device simulator considering the steric hindrance issues. 37.54% and 54% improvement in threshold voltage sensitivity can be obtained for DM-DDL-HTFET over single side DL-SiTFET (DM-SDL-SiTFET) due to variation of oxide layer thickness (T ox ) and source-side dielectric material respectively. Moreover, DM-DDL-HTFET offers 58.64% (42.18%) and 44.44% (73.33%) inferior minimum noise figure and noise conductance over DM-SDL-SiTFET at 50 (250) GHz frequency correspondingly after immobilization of APTES biomolecules.</description><subject>Biological system modeling</subject><subject>Biomolecules</subject><subject>Biosensors</subject><subject>dielectric modulation</subject><subject>Dielectrics</subject><subject>doping-less</subject><subject>Energy gap</subject><subject>hetero-structure</subject><subject>Heterojunctions</subject><subject>Ions</subject><subject>Label-free biosensing</subject><subject>Logic gates</subject><subject>minimum noise figure</subject><subject>Noise</subject><subject>Resistance</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Steric hindrance</subject><subject>TFETs</subject><subject>Thickness</subject><subject>Threshold voltage</subject><subject>Tunneling</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDtPwzAURi0EEqXwB2CxxJziR5zEYymPVqpaJDqwWYlzjVylcbGTIfx63IeY7OGcK30HoXtKJpQS-bRZTVfrCSOMTDjhXGbZBRpRmdKEkEJcxr_gWUKZ-LpGNyFsCaF5JooR0tO2bIZgA3YGr5wNkCx2u74F_OL2tv1uIAQ8hw682_at7qxr8bN1yebtdYNnrg22Bh85_FH6zpYNng-Vt7X9LY_oIoQebtGVKZsAd-d3jD6jPZsny_X7YjZdJppJ0SWpMBWrTE4h5aSqNc-oqXUlOaegiS5ymfJCGFqltCbaSAI0Dj7M0BlIPkaPp6t77356CJ3aut7HdUGxNCMxABNppNiJ0t6F4MGovbe70g-KEnVIqY4p1SGlOqeM0sNJsgDwL0jGpcwl_wPryHCk</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bhattacharyya, Amit</creator><creator>Chanda, Manash</creator><creator>De, Debashis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9659-9737</orcidid><orcidid>https://orcid.org/0000-0002-9688-9806</orcidid><orcidid>https://orcid.org/0000-0002-6914-9474</orcidid></search><sort><creationdate>2020</creationdate><title>Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue</title><author>Bhattacharyya, Amit ; Chanda, Manash ; De, Debashis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-45fb2bf71e430bdc361fdcb9331ec0c8794385f1b41d0cf90e12027658c6e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological system modeling</topic><topic>Biomolecules</topic><topic>Biosensors</topic><topic>dielectric modulation</topic><topic>Dielectrics</topic><topic>doping-less</topic><topic>Energy gap</topic><topic>hetero-structure</topic><topic>Heterojunctions</topic><topic>Ions</topic><topic>Label-free biosensing</topic><topic>Logic gates</topic><topic>minimum noise figure</topic><topic>Noise</topic><topic>Resistance</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Steric hindrance</topic><topic>TFETs</topic><topic>Thickness</topic><topic>Threshold voltage</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharyya, Amit</creatorcontrib><creatorcontrib>Chanda, Manash</creatorcontrib><creatorcontrib>De, Debashis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bhattacharyya, Amit</au><au>Chanda, Manash</au><au>De, Debashis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><spage>769</spage><epage>777</epage><pages>769-777</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>A dielectric modulated (DM) dual-sided dopingless (DL) GaAs 0.5 Sb 0.5 /In 0 . 53 Ga 0 . 47 As hetero-junction (HJ) Tunnel FET (DM-DDL-HTFET) based label-free biosensor architecture having hetero-gate-dielectric (HGD) has been offered. Here, virtual pocket of N + -category with differing electronic concentration (N e ) has been realized through the adjustment of source-sided-channel length (L SC ) below the gate region. Primarily, the optimized structure has been investigated considering energy-band gap, mole fraction of HJ material and gate-to-source spacer thickness (L gap,S ). Next, the efficiency of optimized DDL-HTFET model excluding nano-gap has been juxtaposed with the Si-based TFET contenders. The effect on N e , surface potential (ψ), drain-current (I DS ), and their equivalent sensitivity have been analyzed by the ATLAS device simulator considering the steric hindrance issues. 37.54% and 54% improvement in threshold voltage sensitivity can be obtained for DM-DDL-HTFET over single side DL-SiTFET (DM-SDL-SiTFET) due to variation of oxide layer thickness (T ox ) and source-side dielectric material respectively. Moreover, DM-DDL-HTFET offers 58.64% (42.18%) and 44.44% (73.33%) inferior minimum noise figure and noise conductance over DM-SDL-SiTFET at 50 (250) GHz frequency correspondingly after immobilization of APTES biomolecules.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2020.3033966</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9659-9737</orcidid><orcidid>https://orcid.org/0000-0002-9688-9806</orcidid><orcidid>https://orcid.org/0000-0002-6914-9474</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2020, Vol.19, p.769-777 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_journals_2460153254 |
source | IEL |
subjects | Biological system modeling Biomolecules Biosensors dielectric modulation Dielectrics doping-less Energy gap hetero-structure Heterojunctions Ions Label-free biosensing Logic gates minimum noise figure Noise Resistance Sensitivity Sensitivity analysis Steric hindrance TFETs Thickness Threshold voltage Tunneling |
title | Analysis of Noise-Immune Dopingless Heterojunction Bio-TFET Considering Partial Hybridization Issue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T07%3A27%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Noise-Immune%20Dopingless%20Heterojunction%20Bio-TFET%20Considering%20Partial%20Hybridization%20Issue&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Bhattacharyya,%20Amit&rft.date=2020&rft.volume=19&rft.spage=769&rft.epage=777&rft.pages=769-777&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2020.3033966&rft_dat=%3Cproquest_RIE%3E2460153254%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460153254&rft_id=info:pmid/&rft_ieee_id=9239979&rfr_iscdi=true |