Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions
The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a...
Gespeichert in:
Veröffentlicht in: | Solid state phenomena 2020-11, Vol.312, p.54-61 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 61 |
---|---|
container_issue | |
container_start_page | 54 |
container_title | Solid state phenomena |
container_volume | 312 |
creator | Galkin, Nikolay G. Galkin, Konstantin Nickolaevich Chusovotina, Svetalana Yan, Dmitry |
description | The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect. |
doi_str_mv | 10.4028/www.scientific.net/SSP.312.54 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460137308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460137308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2084-69f58136bb074c37503b43fe5a26dc39b892534a4a3f02783b9cf4159d5511963</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRsFb_Q0AEvZhpvuYjgkgprS6stnTW65DJnuymzCRjkmHpL_PvmXULvfXqnAPnvO_LeYriA8EVx7S7OBwOVdQWXLLG6spBuuj7u4oRWtX8RXFGmoaWom3Fy9xjQkvMBH9dvInxAWNGOtKdFX_uYVTJehf3dkYDpAOAQ2kP6G7vkx-XyTqIGpwG1M-gU1BIuS1a3T-NPmo_PyJv0A-IfvbBLxH1drTaO9SraR4hou0SrNuhtXe7cgNhQn3yQe3gM9pkp2tjstJRYjVNEGJOg6zLNujy9wJHvRv4-POWfWKoz4n-pX1bvDJqjPDuqZ4Xv26uN1ffy_Xtt9XV5brUFHe8bISpO8KaYcAt16ytMRs4M1Ar2mw1E0MnaM244ooZTNuODUIbTmqxrWtCRMPOi_cn3Tn4HCYm-eCX4LKlpLzBhLUMd3nry2lL53_EAEbOwU4qPEqC5ZGVzKzkMyuZWcnMSmZWsub5_uvpPr_XxQR6_2zzfwp_AVCZp5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460137308</pqid></control><display><type>article</type><title>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</title><source>Scientific.net Journals</source><creator>Galkin, Nikolay G. ; Galkin, Konstantin Nickolaevich ; Chusovotina, Svetalana ; Yan, Dmitry</creator><creatorcontrib>Galkin, Nikolay G. ; Galkin, Konstantin Nickolaevich ; Chusovotina, Svetalana ; Yan, Dmitry</creatorcontrib><description>The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.</description><identifier>ISSN: 1012-0394</identifier><identifier>ISSN: 1662-9779</identifier><identifier>EISSN: 1662-9779</identifier><identifier>DOI: 10.4028/www.scientific.net/SSP.312.54</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Aqueous solutions ; Bonding ; Etalons ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; Iron ; Photoluminescence ; Polynomials ; Radiative recombination ; Room temperature ; Silicon dioxide ; Spectrum analysis ; Submerging</subject><ispartof>Solid state phenomena, 2020-11, Vol.312, p.54-61</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2084-69f58136bb074c37503b43fe5a26dc39b892534a4a3f02783b9cf4159d5511963</cites><orcidid>0000-0001-5386-1013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6169?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Galkin, Nikolay G.</creatorcontrib><creatorcontrib>Galkin, Konstantin Nickolaevich</creatorcontrib><creatorcontrib>Chusovotina, Svetalana</creatorcontrib><creatorcontrib>Yan, Dmitry</creatorcontrib><title>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</title><title>Solid state phenomena</title><description>The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.</description><subject>Aqueous solutions</subject><subject>Bonding</subject><subject>Etalons</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Photoluminescence</subject><subject>Polynomials</subject><subject>Radiative recombination</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><issn>1012-0394</issn><issn>1662-9779</issn><issn>1662-9779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkV1rFDEUhgdRsFb_Q0AEvZhpvuYjgkgprS6stnTW65DJnuymzCRjkmHpL_PvmXULvfXqnAPnvO_LeYriA8EVx7S7OBwOVdQWXLLG6spBuuj7u4oRWtX8RXFGmoaWom3Fy9xjQkvMBH9dvInxAWNGOtKdFX_uYVTJehf3dkYDpAOAQ2kP6G7vkx-XyTqIGpwG1M-gU1BIuS1a3T-NPmo_PyJv0A-IfvbBLxH1drTaO9SraR4hou0SrNuhtXe7cgNhQn3yQe3gM9pkp2tjstJRYjVNEGJOg6zLNujy9wJHvRv4-POWfWKoz4n-pX1bvDJqjPDuqZ4Xv26uN1ffy_Xtt9XV5brUFHe8bISpO8KaYcAt16ytMRs4M1Ar2mw1E0MnaM244ooZTNuODUIbTmqxrWtCRMPOi_cn3Tn4HCYm-eCX4LKlpLzBhLUMd3nry2lL53_EAEbOwU4qPEqC5ZGVzKzkMyuZWcnMSmZWsub5_uvpPr_XxQR6_2zzfwp_AVCZp5U</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Galkin, Nikolay G.</creator><creator>Galkin, Konstantin Nickolaevich</creator><creator>Chusovotina, Svetalana</creator><creator>Yan, Dmitry</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5386-1013</orcidid></search><sort><creationdate>20201101</creationdate><title>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</title><author>Galkin, Nikolay G. ; Galkin, Konstantin Nickolaevich ; Chusovotina, Svetalana ; Yan, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2084-69f58136bb074c37503b43fe5a26dc39b892534a4a3f02783b9cf4159d5511963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bonding</topic><topic>Etalons</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Photoluminescence</topic><topic>Polynomials</topic><topic>Radiative recombination</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galkin, Nikolay G.</creatorcontrib><creatorcontrib>Galkin, Konstantin Nickolaevich</creatorcontrib><creatorcontrib>Chusovotina, Svetalana</creatorcontrib><creatorcontrib>Yan, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Solid state phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galkin, Nikolay G.</au><au>Galkin, Konstantin Nickolaevich</au><au>Chusovotina, Svetalana</au><au>Yan, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</atitle><jtitle>Solid state phenomena</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>312</volume><spage>54</spage><epage>61</epage><pages>54-61</pages><issn>1012-0394</issn><issn>1662-9779</issn><eissn>1662-9779</eissn><abstract>The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/SSP.312.54</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5386-1013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1012-0394 |
ispartof | Solid state phenomena, 2020-11, Vol.312, p.54-61 |
issn | 1012-0394 1662-9779 1662-9779 |
language | eng |
recordid | cdi_proquest_journals_2460137308 |
source | Scientific.net Journals |
subjects | Aqueous solutions Bonding Etalons Infrared analysis Infrared spectra Infrared spectroscopy Iron Photoluminescence Polynomials Radiative recombination Room temperature Silicon dioxide Spectrum analysis Submerging |
title | Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20the%20Photoluminescence%20Spectra%20and%20IR%20Spectroscopy%20of%20Mesoporous%20Silicon%20Samples%20during%20Long-Term%20Storage:%20The%20Effect%20of%20Immersion%20in%20an%20Aqueous%20Fe(NO3)3%20Solutions&rft.jtitle=Solid%20state%20phenomena&rft.au=Galkin,%20Nikolay%20G.&rft.date=2020-11-01&rft.volume=312&rft.spage=54&rft.epage=61&rft.pages=54-61&rft.issn=1012-0394&rft.eissn=1662-9779&rft_id=info:doi/10.4028/www.scientific.net/SSP.312.54&rft_dat=%3Cproquest_cross%3E2460137308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460137308&rft_id=info:pmid/&rfr_iscdi=true |