Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions

The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid state phenomena 2020-11, Vol.312, p.54-61
Hauptverfasser: Galkin, Nikolay G., Galkin, Konstantin Nickolaevich, Chusovotina, Svetalana, Yan, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61
container_issue
container_start_page 54
container_title Solid state phenomena
container_volume 312
creator Galkin, Nikolay G.
Galkin, Konstantin Nickolaevich
Chusovotina, Svetalana
Yan, Dmitry
description The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.
doi_str_mv 10.4028/www.scientific.net/SSP.312.54
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460137308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460137308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2084-69f58136bb074c37503b43fe5a26dc39b892534a4a3f02783b9cf4159d5511963</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRsFb_Q0AEvZhpvuYjgkgprS6stnTW65DJnuymzCRjkmHpL_PvmXULvfXqnAPnvO_LeYriA8EVx7S7OBwOVdQWXLLG6spBuuj7u4oRWtX8RXFGmoaWom3Fy9xjQkvMBH9dvInxAWNGOtKdFX_uYVTJehf3dkYDpAOAQ2kP6G7vkx-XyTqIGpwG1M-gU1BIuS1a3T-NPmo_PyJv0A-IfvbBLxH1drTaO9SraR4hou0SrNuhtXe7cgNhQn3yQe3gM9pkp2tjstJRYjVNEGJOg6zLNujy9wJHvRv4-POWfWKoz4n-pX1bvDJqjPDuqZ4Xv26uN1ffy_Xtt9XV5brUFHe8bISpO8KaYcAt16ytMRs4M1Ar2mw1E0MnaM244ooZTNuODUIbTmqxrWtCRMPOi_cn3Tn4HCYm-eCX4LKlpLzBhLUMd3nry2lL53_EAEbOwU4qPEqC5ZGVzKzkMyuZWcnMSmZWsub5_uvpPr_XxQR6_2zzfwp_AVCZp5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460137308</pqid></control><display><type>article</type><title>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</title><source>Scientific.net Journals</source><creator>Galkin, Nikolay G. ; Galkin, Konstantin Nickolaevich ; Chusovotina, Svetalana ; Yan, Dmitry</creator><creatorcontrib>Galkin, Nikolay G. ; Galkin, Konstantin Nickolaevich ; Chusovotina, Svetalana ; Yan, Dmitry</creatorcontrib><description>The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.</description><identifier>ISSN: 1012-0394</identifier><identifier>ISSN: 1662-9779</identifier><identifier>EISSN: 1662-9779</identifier><identifier>DOI: 10.4028/www.scientific.net/SSP.312.54</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Aqueous solutions ; Bonding ; Etalons ; Infrared analysis ; Infrared spectra ; Infrared spectroscopy ; Iron ; Photoluminescence ; Polynomials ; Radiative recombination ; Room temperature ; Silicon dioxide ; Spectrum analysis ; Submerging</subject><ispartof>Solid state phenomena, 2020-11, Vol.312, p.54-61</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2084-69f58136bb074c37503b43fe5a26dc39b892534a4a3f02783b9cf4159d5511963</cites><orcidid>0000-0001-5386-1013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6169?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Galkin, Nikolay G.</creatorcontrib><creatorcontrib>Galkin, Konstantin Nickolaevich</creatorcontrib><creatorcontrib>Chusovotina, Svetalana</creatorcontrib><creatorcontrib>Yan, Dmitry</creatorcontrib><title>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</title><title>Solid state phenomena</title><description>The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.</description><subject>Aqueous solutions</subject><subject>Bonding</subject><subject>Etalons</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Photoluminescence</subject><subject>Polynomials</subject><subject>Radiative recombination</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><subject>Spectrum analysis</subject><subject>Submerging</subject><issn>1012-0394</issn><issn>1662-9779</issn><issn>1662-9779</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkV1rFDEUhgdRsFb_Q0AEvZhpvuYjgkgprS6stnTW65DJnuymzCRjkmHpL_PvmXULvfXqnAPnvO_LeYriA8EVx7S7OBwOVdQWXLLG6spBuuj7u4oRWtX8RXFGmoaWom3Fy9xjQkvMBH9dvInxAWNGOtKdFX_uYVTJehf3dkYDpAOAQ2kP6G7vkx-XyTqIGpwG1M-gU1BIuS1a3T-NPmo_PyJv0A-IfvbBLxH1drTaO9SraR4hou0SrNuhtXe7cgNhQn3yQe3gM9pkp2tjstJRYjVNEGJOg6zLNujy9wJHvRv4-POWfWKoz4n-pX1bvDJqjPDuqZ4Xv26uN1ffy_Xtt9XV5brUFHe8bISpO8KaYcAt16ytMRs4M1Ar2mw1E0MnaM244ooZTNuODUIbTmqxrWtCRMPOi_cn3Tn4HCYm-eCX4LKlpLzBhLUMd3nry2lL53_EAEbOwU4qPEqC5ZGVzKzkMyuZWcnMSmZWsub5_uvpPr_XxQR6_2zzfwp_AVCZp5U</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Galkin, Nikolay G.</creator><creator>Galkin, Konstantin Nickolaevich</creator><creator>Chusovotina, Svetalana</creator><creator>Yan, Dmitry</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5386-1013</orcidid></search><sort><creationdate>20201101</creationdate><title>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</title><author>Galkin, Nikolay G. ; Galkin, Konstantin Nickolaevich ; Chusovotina, Svetalana ; Yan, Dmitry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2084-69f58136bb074c37503b43fe5a26dc39b892534a4a3f02783b9cf4159d5511963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bonding</topic><topic>Etalons</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Photoluminescence</topic><topic>Polynomials</topic><topic>Radiative recombination</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><topic>Spectrum analysis</topic><topic>Submerging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galkin, Nikolay G.</creatorcontrib><creatorcontrib>Galkin, Konstantin Nickolaevich</creatorcontrib><creatorcontrib>Chusovotina, Svetalana</creatorcontrib><creatorcontrib>Yan, Dmitry</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Solid state phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galkin, Nikolay G.</au><au>Galkin, Konstantin Nickolaevich</au><au>Chusovotina, Svetalana</au><au>Yan, Dmitry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions</atitle><jtitle>Solid state phenomena</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>312</volume><spage>54</spage><epage>61</epage><pages>54-61</pages><issn>1012-0394</issn><issn>1662-9779</issn><eissn>1662-9779</eissn><abstract>The article provides a comparative analysis of changes in the PL spectra and infrared spectroscopy (IR) with reference and immersion samples of mesoporous silicon during long-term storage in air at room temperature. Immersion was carried out in an aqueous solution of iron nitrate (Fe (NO3)3) with a concentration of 0.2 M and 0.5 M with three times: 5, 10 and 20 minutes. An analysis of the FIR data for etalon and immersion samples showed a number of features found during long-term storage of mesoporous silicon: (1) a sharp decrease in the density of hydride bonds; (2) the polynomial nature of the growth of O3-SiH and Si-OH bonds saturating dangling bonds; and (3) the polynomial growth of silicon dioxide with the formation of oxygen defects. It was found that after immersion in a solution of 0.5 M Fe (NO3)3 for 10 minutes, a more intense increase in the PL in mesoporous silicon is observed while maintaining its nanostructure after 200 days of storage compared with the etalon sample, for which a weak quantum size confinement (QSC) is observed. The main mechanism of photoluminescence increase in mesoporous silicon during long-term storage is radiative recombination from oxygen defect levels, not from a QSC effect.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/SSP.312.54</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5386-1013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1012-0394
ispartof Solid state phenomena, 2020-11, Vol.312, p.54-61
issn 1012-0394
1662-9779
1662-9779
language eng
recordid cdi_proquest_journals_2460137308
source Scientific.net Journals
subjects Aqueous solutions
Bonding
Etalons
Infrared analysis
Infrared spectra
Infrared spectroscopy
Iron
Photoluminescence
Polynomials
Radiative recombination
Room temperature
Silicon dioxide
Spectrum analysis
Submerging
title Relationship between the Photoluminescence Spectra and IR Spectroscopy of Mesoporous Silicon Samples during Long-Term Storage: The Effect of Immersion in an Aqueous Fe(NO3)3 Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationship%20between%20the%20Photoluminescence%20Spectra%20and%20IR%20Spectroscopy%20of%20Mesoporous%20Silicon%20Samples%20during%20Long-Term%20Storage:%20The%20Effect%20of%20Immersion%20in%20an%20Aqueous%20Fe(NO3)3%20Solutions&rft.jtitle=Solid%20state%20phenomena&rft.au=Galkin,%20Nikolay%20G.&rft.date=2020-11-01&rft.volume=312&rft.spage=54&rft.epage=61&rft.pages=54-61&rft.issn=1012-0394&rft.eissn=1662-9779&rft_id=info:doi/10.4028/www.scientific.net/SSP.312.54&rft_dat=%3Cproquest_cross%3E2460137308%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460137308&rft_id=info:pmid/&rfr_iscdi=true