Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries

•GPU algorithm for numerical modelling of multi-phase flows.•Direct calculation of capillary pressure for a complex interface in a micro-matrix.•Displacement flows in a single capillary and in uniform matrices occur qualitatively similarly.•Integral parameters quickly converge upon increase of the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-11, Vol.421, p.109747, Article 109747
Hauptverfasser: Vorobev, A., Prokopev, S., Lyubimova, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109747
container_title Journal of computational physics
container_volume 421
creator Vorobev, A.
Prokopev, S.
Lyubimova, T.
description •GPU algorithm for numerical modelling of multi-phase flows.•Direct calculation of capillary pressure for a complex interface in a micro-matrix.•Displacement flows in a single capillary and in uniform matrices occur qualitatively similarly.•Integral parameters quickly converge upon increase of the matrix size.•Capillary pressure is given by the difference of the flow rates for the two-phase and single-phase flows. The liquid/liquid displacement through a 2D uniform network of capillaries is numerically modelled with the use of the phase-field approach. The detailed structure of the flow fields within the uniform matrices of different sizes (with the different number of pores) is examined with the aim to reveal the asymptotic behaviour, pertinent for a sufficiently large matrix, that could be used for representation of a porous medium. The integral characteristics of the flow that do not depend on the matrix size can be used for calculation of the parameters of a macroscopic (Darcy) approach. We demonstrate that qualitatively the displacement occurs very similarly in the matrices with the different number of structural elements. In particular, we show that the capillary pressure remains nearly constant during the displacement run until the break-through time (with some minor variations related to a particular shape of a matrix). Upon increase of the matrix size the magnitude of the capillary pressure (and all other integral characteristics of the two-phase flow) quickly converges to the limiting value (so that the limiting results are already reached for a matrix with 6×6 elements), giving the direct procedure for calculation of the capillary pressure in a porous medium.
doi_str_mv 10.1016/j.jcp.2020.109747
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2460109749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120305210</els_id><sourcerecordid>2460109749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-745544cf59599b179f327ecb924b4fcdc2a0011e9035011290e848b37166d00f3</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEqXwA7hF4px27DiLxQlVbFIlOMDZcpxJ6-AstVMQ_x6HcOb0ZqT3ZvkIuaawokCzdbNq9LBiwKZe5Dw_IYtQQMxymp2SBQCjsRCCnpML7xsAKFJeLIh63SuPcW3QVlHbV2it6XZRX0cqsuZwNNV6lsi0rfHalBajyvjBKo0tdmM07l1_3O2Dv8Pxq3cfU1irwVirnEF_Sc5qZT1e_emSvD_cv22e4u3L4_PmbhvrJCvGOOdpyrmuU5EKUdJc1AnLUZeC8ZLXutJMAVCKApI0KBOABS_KJLyXVQB1siQ389zB9Ycj-lE2_dF1YaVkPINfKiK46OzSrvfeYS0HZ1rlviUFOZGUjQwk5URSziRD5nbOYDj_06CTgQN2GivjUI-y6s0_6R8dNHsq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460109749</pqid></control><display><type>article</type><title>Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries</title><source>Elsevier ScienceDirect Journals</source><creator>Vorobev, A. ; Prokopev, S. ; Lyubimova, T.</creator><creatorcontrib>Vorobev, A. ; Prokopev, S. ; Lyubimova, T.</creatorcontrib><description>•GPU algorithm for numerical modelling of multi-phase flows.•Direct calculation of capillary pressure for a complex interface in a micro-matrix.•Displacement flows in a single capillary and in uniform matrices occur qualitatively similarly.•Integral parameters quickly converge upon increase of the matrix size.•Capillary pressure is given by the difference of the flow rates for the two-phase and single-phase flows. The liquid/liquid displacement through a 2D uniform network of capillaries is numerically modelled with the use of the phase-field approach. The detailed structure of the flow fields within the uniform matrices of different sizes (with the different number of pores) is examined with the aim to reveal the asymptotic behaviour, pertinent for a sufficiently large matrix, that could be used for representation of a porous medium. The integral characteristics of the flow that do not depend on the matrix size can be used for calculation of the parameters of a macroscopic (Darcy) approach. We demonstrate that qualitatively the displacement occurs very similarly in the matrices with the different number of structural elements. In particular, we show that the capillary pressure remains nearly constant during the displacement run until the break-through time (with some minor variations related to a particular shape of a matrix). Upon increase of the matrix size the magnitude of the capillary pressure (and all other integral characteristics of the two-phase flow) quickly converges to the limiting value (so that the limiting results are already reached for a matrix with 6×6 elements), giving the direct procedure for calculation of the capillary pressure in a porous medium.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109747</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Asymptotic properties ; Capillaries ; Capillary pressure ; Computational physics ; Constraining ; Displacement ; GPU calculations ; Integrals ; Phase-field (Cahn-Hilliard) approach ; Pore-level modelling ; Porous media ; Porous medium ; Structural members ; Two dimensional models ; Two phase flow</subject><ispartof>Journal of computational physics, 2020-11, Vol.421, p.109747, Article 109747</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Nov 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-745544cf59599b179f327ecb924b4fcdc2a0011e9035011290e848b37166d00f3</citedby><cites>FETCH-LOGICAL-c368t-745544cf59599b179f327ecb924b4fcdc2a0011e9035011290e848b37166d00f3</cites><orcidid>0000-0002-6458-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999120305210$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vorobev, A.</creatorcontrib><creatorcontrib>Prokopev, S.</creatorcontrib><creatorcontrib>Lyubimova, T.</creatorcontrib><title>Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries</title><title>Journal of computational physics</title><description>•GPU algorithm for numerical modelling of multi-phase flows.•Direct calculation of capillary pressure for a complex interface in a micro-matrix.•Displacement flows in a single capillary and in uniform matrices occur qualitatively similarly.•Integral parameters quickly converge upon increase of the matrix size.•Capillary pressure is given by the difference of the flow rates for the two-phase and single-phase flows. The liquid/liquid displacement through a 2D uniform network of capillaries is numerically modelled with the use of the phase-field approach. The detailed structure of the flow fields within the uniform matrices of different sizes (with the different number of pores) is examined with the aim to reveal the asymptotic behaviour, pertinent for a sufficiently large matrix, that could be used for representation of a porous medium. The integral characteristics of the flow that do not depend on the matrix size can be used for calculation of the parameters of a macroscopic (Darcy) approach. We demonstrate that qualitatively the displacement occurs very similarly in the matrices with the different number of structural elements. In particular, we show that the capillary pressure remains nearly constant during the displacement run until the break-through time (with some minor variations related to a particular shape of a matrix). Upon increase of the matrix size the magnitude of the capillary pressure (and all other integral characteristics of the two-phase flow) quickly converges to the limiting value (so that the limiting results are already reached for a matrix with 6×6 elements), giving the direct procedure for calculation of the capillary pressure in a porous medium.</description><subject>Asymptotic properties</subject><subject>Capillaries</subject><subject>Capillary pressure</subject><subject>Computational physics</subject><subject>Constraining</subject><subject>Displacement</subject><subject>GPU calculations</subject><subject>Integrals</subject><subject>Phase-field (Cahn-Hilliard) approach</subject><subject>Pore-level modelling</subject><subject>Porous media</subject><subject>Porous medium</subject><subject>Structural members</subject><subject>Two dimensional models</subject><subject>Two phase flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEqXwA7hF4px27DiLxQlVbFIlOMDZcpxJ6-AstVMQ_x6HcOb0ZqT3ZvkIuaawokCzdbNq9LBiwKZe5Dw_IYtQQMxymp2SBQCjsRCCnpML7xsAKFJeLIh63SuPcW3QVlHbV2it6XZRX0cqsuZwNNV6lsi0rfHalBajyvjBKo0tdmM07l1_3O2Dv8Pxq3cfU1irwVirnEF_Sc5qZT1e_emSvD_cv22e4u3L4_PmbhvrJCvGOOdpyrmuU5EKUdJc1AnLUZeC8ZLXutJMAVCKApI0KBOABS_KJLyXVQB1siQ389zB9Ycj-lE2_dF1YaVkPINfKiK46OzSrvfeYS0HZ1rlviUFOZGUjQwk5URSziRD5nbOYDj_06CTgQN2GivjUI-y6s0_6R8dNHsq</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Vorobev, A.</creator><creator>Prokopev, S.</creator><creator>Lyubimova, T.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6458-9390</orcidid></search><sort><creationdate>20201115</creationdate><title>Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries</title><author>Vorobev, A. ; Prokopev, S. ; Lyubimova, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-745544cf59599b179f327ecb924b4fcdc2a0011e9035011290e848b37166d00f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic properties</topic><topic>Capillaries</topic><topic>Capillary pressure</topic><topic>Computational physics</topic><topic>Constraining</topic><topic>Displacement</topic><topic>GPU calculations</topic><topic>Integrals</topic><topic>Phase-field (Cahn-Hilliard) approach</topic><topic>Pore-level modelling</topic><topic>Porous media</topic><topic>Porous medium</topic><topic>Structural members</topic><topic>Two dimensional models</topic><topic>Two phase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vorobev, A.</creatorcontrib><creatorcontrib>Prokopev, S.</creatorcontrib><creatorcontrib>Lyubimova, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vorobev, A.</au><au>Prokopev, S.</au><au>Lyubimova, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries</atitle><jtitle>Journal of computational physics</jtitle><date>2020-11-15</date><risdate>2020</risdate><volume>421</volume><spage>109747</spage><pages>109747-</pages><artnum>109747</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•GPU algorithm for numerical modelling of multi-phase flows.•Direct calculation of capillary pressure for a complex interface in a micro-matrix.•Displacement flows in a single capillary and in uniform matrices occur qualitatively similarly.•Integral parameters quickly converge upon increase of the matrix size.•Capillary pressure is given by the difference of the flow rates for the two-phase and single-phase flows. The liquid/liquid displacement through a 2D uniform network of capillaries is numerically modelled with the use of the phase-field approach. The detailed structure of the flow fields within the uniform matrices of different sizes (with the different number of pores) is examined with the aim to reveal the asymptotic behaviour, pertinent for a sufficiently large matrix, that could be used for representation of a porous medium. The integral characteristics of the flow that do not depend on the matrix size can be used for calculation of the parameters of a macroscopic (Darcy) approach. We demonstrate that qualitatively the displacement occurs very similarly in the matrices with the different number of structural elements. In particular, we show that the capillary pressure remains nearly constant during the displacement run until the break-through time (with some minor variations related to a particular shape of a matrix). Upon increase of the matrix size the magnitude of the capillary pressure (and all other integral characteristics of the two-phase flow) quickly converges to the limiting value (so that the limiting results are already reached for a matrix with 6×6 elements), giving the direct procedure for calculation of the capillary pressure in a porous medium.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109747</doi><orcidid>https://orcid.org/0000-0002-6458-9390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-11, Vol.421, p.109747, Article 109747
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2460109749
source Elsevier ScienceDirect Journals
subjects Asymptotic properties
Capillaries
Capillary pressure
Computational physics
Constraining
Displacement
GPU calculations
Integrals
Phase-field (Cahn-Hilliard) approach
Pore-level modelling
Porous media
Porous medium
Structural members
Two dimensional models
Two phase flow
title Phase-field modelling of a liquid/liquid immiscible displacement through a network of capillaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20modelling%20of%20a%20liquid/liquid%20immiscible%20displacement%20through%20a%20network%20of%20capillaries&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Vorobev,%20A.&rft.date=2020-11-15&rft.volume=421&rft.spage=109747&rft.pages=109747-&rft.artnum=109747&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109747&rft_dat=%3Cproquest_cross%3E2460109749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460109749&rft_id=info:pmid/&rft_els_id=S0021999120305210&rfr_iscdi=true