Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network
Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-11, Vol.30 (46), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 46 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Homann, Gerrit Stolz, Lukas Neuhaus, Kerstin Winter, Martin Kasnatscheew, Johannes |
description | Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature.
Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C. |
doi_str_mv | 10.1002/adfm.202006289 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459592833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459592833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</originalsourceid><addsrcrecordid>eNqFkb1OwzAURiMEElBYmS2xwNDin9ZJxhZaWqlQpAJii5z4pjUkcbFdSph4BF6CF-NJMBTByHRt-TvnWvqC4IDgFsGYngiZly2KKcacRvFGsEM44U2GabT5eyZ328GutfcYkzBk7Z3gvZ_nkDn1BGiycKpUL8IpXSGdo6GazdGtLpyYAZrqQsmP17epEw7QWLm5WpaoJ5wDo8CitEY3VlUzdKWL-gjcvC6gAqSflYRjz_WEBfn9WIJB_cLvNP7iXSvvQlMolU-NKq9beNAZ_w1vuwS30uZhL9jKRWFh_2c2gptB__p02BxPzken3XEzYzGPm4K0BZcEi9APlkUY0iwmEY9SlkZZmFEIBUDYCYnspAJngmEpOeZcQMS4pKwRHK69C6Mfl2Bdcq-XpvIrE9ruxJ2YRoz5VGudyoy21kCeLIwqhakTgpOvKpKvKpLfKjwQr4GVKqD-J510zwYXf-wnXGaUhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459592833</pqid></control><display><type>article</type><title>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Homann, Gerrit ; Stolz, Lukas ; Neuhaus, Kerstin ; Winter, Martin ; Kasnatscheew, Johannes</creator><creatorcontrib>Homann, Gerrit ; Stolz, Lukas ; Neuhaus, Kerstin ; Winter, Martin ; Kasnatscheew, Johannes</creatorcontrib><description>Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature.
Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006289</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Dendritic structure ; Electrolytes ; Electrolytic cells ; Ethylene oxide ; Failure ; high voltage NMC ; High voltages ; Homogeneity ; Interpenetrating networks ; Ion currents ; Li metal batteries ; Lithium ; Lithium batteries ; Materials science ; Molten salt electrolytes ; Optimization ; poly(ethylene oxide) ; Polyethylene oxide ; Polymers ; semi interpenetration network ; Solid electrolytes ; solid polymer electrolytes</subject><ispartof>Advanced functional materials, 2020-11, Vol.30 (46), p.n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</citedby><cites>FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</cites><orcidid>0000-0002-8885-8591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202006289$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202006289$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Homann, Gerrit</creatorcontrib><creatorcontrib>Stolz, Lukas</creatorcontrib><creatorcontrib>Neuhaus, Kerstin</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><title>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</title><title>Advanced functional materials</title><description>Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature.
Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.</description><subject>Dendritic structure</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ethylene oxide</subject><subject>Failure</subject><subject>high voltage NMC</subject><subject>High voltages</subject><subject>Homogeneity</subject><subject>Interpenetrating networks</subject><subject>Ion currents</subject><subject>Li metal batteries</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Materials science</subject><subject>Molten salt electrolytes</subject><subject>Optimization</subject><subject>poly(ethylene oxide)</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>semi interpenetration network</subject><subject>Solid electrolytes</subject><subject>solid polymer electrolytes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkb1OwzAURiMEElBYmS2xwNDin9ZJxhZaWqlQpAJii5z4pjUkcbFdSph4BF6CF-NJMBTByHRt-TvnWvqC4IDgFsGYngiZly2KKcacRvFGsEM44U2GabT5eyZ328GutfcYkzBk7Z3gvZ_nkDn1BGiycKpUL8IpXSGdo6GazdGtLpyYAZrqQsmP17epEw7QWLm5WpaoJ5wDo8CitEY3VlUzdKWL-gjcvC6gAqSflYRjz_WEBfn9WIJB_cLvNP7iXSvvQlMolU-NKq9beNAZ_w1vuwS30uZhL9jKRWFh_2c2gptB__p02BxPzken3XEzYzGPm4K0BZcEi9APlkUY0iwmEY9SlkZZmFEIBUDYCYnspAJngmEpOeZcQMS4pKwRHK69C6Mfl2Bdcq-XpvIrE9ruxJ2YRoz5VGudyoy21kCeLIwqhakTgpOvKpKvKpLfKjwQr4GVKqD-J510zwYXf-wnXGaUhA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Homann, Gerrit</creator><creator>Stolz, Lukas</creator><creator>Neuhaus, Kerstin</creator><creator>Winter, Martin</creator><creator>Kasnatscheew, Johannes</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid></search><sort><creationdate>20201101</creationdate><title>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</title><author>Homann, Gerrit ; Stolz, Lukas ; Neuhaus, Kerstin ; Winter, Martin ; Kasnatscheew, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dendritic structure</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ethylene oxide</topic><topic>Failure</topic><topic>high voltage NMC</topic><topic>High voltages</topic><topic>Homogeneity</topic><topic>Interpenetrating networks</topic><topic>Ion currents</topic><topic>Li metal batteries</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Materials science</topic><topic>Molten salt electrolytes</topic><topic>Optimization</topic><topic>poly(ethylene oxide)</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>semi interpenetration network</topic><topic>Solid electrolytes</topic><topic>solid polymer electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homann, Gerrit</creatorcontrib><creatorcontrib>Stolz, Lukas</creatorcontrib><creatorcontrib>Neuhaus, Kerstin</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homann, Gerrit</au><au>Stolz, Lukas</au><au>Neuhaus, Kerstin</au><au>Winter, Martin</au><au>Kasnatscheew, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</atitle><jtitle>Advanced functional materials</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature.
Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-11, Vol.30 (46), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2459592833 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Dendritic structure Electrolytes Electrolytic cells Ethylene oxide Failure high voltage NMC High voltages Homogeneity Interpenetrating networks Ion currents Li metal batteries Lithium Lithium batteries Materials science Molten salt electrolytes Optimization poly(ethylene oxide) Polyethylene oxide Polymers semi interpenetration network Solid electrolytes solid polymer electrolytes |
title | Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Optimization%20of%20High%20Voltage%20Solid%E2%80%90State%20Lithium%20Batteries%20by%20Using%20Poly(ethylene%20oxide)%E2%80%90Based%20Polymer%20Electrolyte%20with%20Semi%E2%80%90Interpenetrating%20Network&rft.jtitle=Advanced%20functional%20materials&rft.au=Homann,%20Gerrit&rft.date=2020-11-01&rft.volume=30&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006289&rft_dat=%3Cproquest_cross%3E2459592833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459592833&rft_id=info:pmid/&rfr_iscdi=true |