Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network

Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-11, Vol.30 (46), p.n/a
Hauptverfasser: Homann, Gerrit, Stolz, Lukas, Neuhaus, Kerstin, Winter, Martin, Kasnatscheew, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 30
creator Homann, Gerrit
Stolz, Lukas
Neuhaus, Kerstin
Winter, Martin
Kasnatscheew, Johannes
description Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature. Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.
doi_str_mv 10.1002/adfm.202006289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459592833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459592833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</originalsourceid><addsrcrecordid>eNqFkb1OwzAURiMEElBYmS2xwNDin9ZJxhZaWqlQpAJii5z4pjUkcbFdSph4BF6CF-NJMBTByHRt-TvnWvqC4IDgFsGYngiZly2KKcacRvFGsEM44U2GabT5eyZ328GutfcYkzBk7Z3gvZ_nkDn1BGiycKpUL8IpXSGdo6GazdGtLpyYAZrqQsmP17epEw7QWLm5WpaoJ5wDo8CitEY3VlUzdKWL-gjcvC6gAqSflYRjz_WEBfn9WIJB_cLvNP7iXSvvQlMolU-NKq9beNAZ_w1vuwS30uZhL9jKRWFh_2c2gptB__p02BxPzken3XEzYzGPm4K0BZcEi9APlkUY0iwmEY9SlkZZmFEIBUDYCYnspAJngmEpOeZcQMS4pKwRHK69C6Mfl2Bdcq-XpvIrE9ruxJ2YRoz5VGudyoy21kCeLIwqhakTgpOvKpKvKpLfKjwQr4GVKqD-J510zwYXf-wnXGaUhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459592833</pqid></control><display><type>article</type><title>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Homann, Gerrit ; Stolz, Lukas ; Neuhaus, Kerstin ; Winter, Martin ; Kasnatscheew, Johannes</creator><creatorcontrib>Homann, Gerrit ; Stolz, Lukas ; Neuhaus, Kerstin ; Winter, Martin ; Kasnatscheew, Johannes</creatorcontrib><description>Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature. Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006289</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Dendritic structure ; Electrolytes ; Electrolytic cells ; Ethylene oxide ; Failure ; high voltage NMC ; High voltages ; Homogeneity ; Interpenetrating networks ; Ion currents ; Li metal batteries ; Lithium ; Lithium batteries ; Materials science ; Molten salt electrolytes ; Optimization ; poly(ethylene oxide) ; Polyethylene oxide ; Polymers ; semi interpenetration network ; Solid electrolytes ; solid polymer electrolytes</subject><ispartof>Advanced functional materials, 2020-11, Vol.30 (46), p.n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</citedby><cites>FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</cites><orcidid>0000-0002-8885-8591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202006289$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202006289$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Homann, Gerrit</creatorcontrib><creatorcontrib>Stolz, Lukas</creatorcontrib><creatorcontrib>Neuhaus, Kerstin</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><title>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</title><title>Advanced functional materials</title><description>Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature. Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.</description><subject>Dendritic structure</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ethylene oxide</subject><subject>Failure</subject><subject>high voltage NMC</subject><subject>High voltages</subject><subject>Homogeneity</subject><subject>Interpenetrating networks</subject><subject>Ion currents</subject><subject>Li metal batteries</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Materials science</subject><subject>Molten salt electrolytes</subject><subject>Optimization</subject><subject>poly(ethylene oxide)</subject><subject>Polyethylene oxide</subject><subject>Polymers</subject><subject>semi interpenetration network</subject><subject>Solid electrolytes</subject><subject>solid polymer electrolytes</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkb1OwzAURiMEElBYmS2xwNDin9ZJxhZaWqlQpAJii5z4pjUkcbFdSph4BF6CF-NJMBTByHRt-TvnWvqC4IDgFsGYngiZly2KKcacRvFGsEM44U2GabT5eyZ328GutfcYkzBk7Z3gvZ_nkDn1BGiycKpUL8IpXSGdo6GazdGtLpyYAZrqQsmP17epEw7QWLm5WpaoJ5wDo8CitEY3VlUzdKWL-gjcvC6gAqSflYRjz_WEBfn9WIJB_cLvNP7iXSvvQlMolU-NKq9beNAZ_w1vuwS30uZhL9jKRWFh_2c2gptB__p02BxPzken3XEzYzGPm4K0BZcEi9APlkUY0iwmEY9SlkZZmFEIBUDYCYnspAJngmEpOeZcQMS4pKwRHK69C6Mfl2Bdcq-XpvIrE9ruxJ2YRoz5VGudyoy21kCeLIwqhakTgpOvKpKvKpLfKjwQr4GVKqD-J510zwYXf-wnXGaUhA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Homann, Gerrit</creator><creator>Stolz, Lukas</creator><creator>Neuhaus, Kerstin</creator><creator>Winter, Martin</creator><creator>Kasnatscheew, Johannes</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid></search><sort><creationdate>20201101</creationdate><title>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</title><author>Homann, Gerrit ; Stolz, Lukas ; Neuhaus, Kerstin ; Winter, Martin ; Kasnatscheew, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3969-a14a6d10a7a6d3c80ebc91868b3b8c7c2e7aee7571d5ba0ca30dd6066ae836d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dendritic structure</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ethylene oxide</topic><topic>Failure</topic><topic>high voltage NMC</topic><topic>High voltages</topic><topic>Homogeneity</topic><topic>Interpenetrating networks</topic><topic>Ion currents</topic><topic>Li metal batteries</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Materials science</topic><topic>Molten salt electrolytes</topic><topic>Optimization</topic><topic>poly(ethylene oxide)</topic><topic>Polyethylene oxide</topic><topic>Polymers</topic><topic>semi interpenetration network</topic><topic>Solid electrolytes</topic><topic>solid polymer electrolytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homann, Gerrit</creatorcontrib><creatorcontrib>Stolz, Lukas</creatorcontrib><creatorcontrib>Neuhaus, Kerstin</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Kasnatscheew, Johannes</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Homann, Gerrit</au><au>Stolz, Lukas</au><au>Neuhaus, Kerstin</au><au>Winter, Martin</au><au>Kasnatscheew, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network</atitle><jtitle>Advanced functional materials</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>30</volume><issue>46</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solid polymer electrolytes (SPEs) are promising candidates for the realization of lithium metal batteries. However, the popular SPE based on poly(ethylene oxide) (PEO) reveals a “voltage noise”‐failure during charge, for example, with high energy/high voltage electrodes like LiNi0.6Mn0.2Co0.2O2 (NMC622), which can be attributed to short‐circuits via penetrating Li dendrites. This failure disappears when integrating PEO‐based SPE in a semi interpenetrating network, which mainly consists of PEO units, as well. In this work, it is shown that this SPE allows performance improvement via elimination of the crystalline domains without significant sacrifice of mechanical integrity. Hence, a highly amorphous SPE can be obtained by a simple increase of plasticizing Li salts, which overall is beneficial, not only for the ionic conductivity, but also the homogeneity, while remaining mechanically stable and solid in its original shape even after storage at 60 °C for 7 days. These aspects are crucial for the performance of the modified SPE as they can suppress the failure‐causing Li dendrite penetration while the electrochemical aspects, that is, anodic stability, are rather unaffected by the modification and remain stable (4.6 V vs Li│Li+). Overall, this optimized SPE enables stable cycling performance in NMC622│SPE│Li cells, even at 40 °C operation temperature. Common linear poly(ethylene oxide) (PEO)‐based solid polymer electrolytes demonstrate a short‐circuit in high voltage lithium metal batteries with, for example, LiNi0.6Mn0.2Co0.2O2 (NMC622), seen by a characteristic voltage noise. Incorporation of linear PEO in a PEO‐based semi‐interpenetrating network suppresses the deteriorating Li dendrite penetration and enables further optimization opportunities, which realizes good performance even at 40 °C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8885-8591</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-11, Vol.30 (46), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2459592833
source Wiley Online Library Journals Frontfile Complete
subjects Dendritic structure
Electrolytes
Electrolytic cells
Ethylene oxide
Failure
high voltage NMC
High voltages
Homogeneity
Interpenetrating networks
Ion currents
Li metal batteries
Lithium
Lithium batteries
Materials science
Molten salt electrolytes
Optimization
poly(ethylene oxide)
Polyethylene oxide
Polymers
semi interpenetration network
Solid electrolytes
solid polymer electrolytes
title Effective Optimization of High Voltage Solid‐State Lithium Batteries by Using Poly(ethylene oxide)‐Based Polymer Electrolyte with Semi‐Interpenetrating Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A36%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Optimization%20of%20High%20Voltage%20Solid%E2%80%90State%20Lithium%20Batteries%20by%20Using%20Poly(ethylene%20oxide)%E2%80%90Based%20Polymer%20Electrolyte%20with%20Semi%E2%80%90Interpenetrating%20Network&rft.jtitle=Advanced%20functional%20materials&rft.au=Homann,%20Gerrit&rft.date=2020-11-01&rft.volume=30&rft.issue=46&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006289&rft_dat=%3Cproquest_cross%3E2459592833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459592833&rft_id=info:pmid/&rfr_iscdi=true