Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks
Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environme...
Gespeichert in:
Veröffentlicht in: | International journal of RF and microwave computer-aided engineering 2020-12, Vol.30 (12), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | International journal of RF and microwave computer-aided engineering |
container_volume | 30 |
creator | Seker, Cihat Guneser, Muhammet Tahir Arslan, Huseyin |
description | Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication. |
doi_str_mv | 10.1002/mmce.22455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459503054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459503054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTph6cps6Sym1FVrcKLgLaSapqTOTmoyWduUj-Iw-iWnHtXDgHPi_c_sRuiQwIAD0pq61GVDKhThCPQJFkQEfvhwf6jzjtIBTdBbjCiBplPWQnbuqcrVpTfj5-t6oT4PXwa_VUrXON7j2palcs8SqKbF-VUHpRLpdp6oWM4on0x12TYrS-4C9tU4bbFMpJrgx7caHt3iOTqyqorn4y330fD9-Gk2z2ePkYXQ3yzQVVGSUF8ymuyAn2i4MLUrKiMpvaUmV0EYwngtLCAPN89IOARa64IbzklvFhlSwPrrq5qYn3j9MbOXKf4QmrZTJlEIAA8ETdd1ROvgYg7FyHVytwlYSkHsf5d5HefAxwaSDN64y239IOZ-Pxl3PL0GjddI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459503054</pqid></control><display><type>article</type><title>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</title><source>Access via Wiley Online Library</source><creator>Seker, Cihat ; Guneser, Muhammet Tahir ; Arslan, Huseyin</creator><creatorcontrib>Seker, Cihat ; Guneser, Muhammet Tahir ; Arslan, Huseyin</creatorcontrib><description>Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.</description><identifier>ISSN: 1096-4290</identifier><identifier>EISSN: 1099-047X</identifier><identifier>DOI: 10.1002/mmce.22455</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>32 GHz ; Bandwidths ; channel parameters ; Indoor environments ; indoor office ; large‐scale fading ; millimeter wave ; Millimeter waves ; Modelling ; Wave propagation ; Wireless communications ; Wireless networks</subject><ispartof>International journal of RF and microwave computer-aided engineering, 2020-12, Vol.30 (12), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</citedby><cites>FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</cites><orcidid>0000-0001-9474-7372 ; 0000-0003-3502-2034 ; 0000-0002-9680-4622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmmce.22455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmmce.22455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Seker, Cihat</creatorcontrib><creatorcontrib>Guneser, Muhammet Tahir</creatorcontrib><creatorcontrib>Arslan, Huseyin</creatorcontrib><title>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</title><title>International journal of RF and microwave computer-aided engineering</title><description>Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.</description><subject>32 GHz</subject><subject>Bandwidths</subject><subject>channel parameters</subject><subject>Indoor environments</subject><subject>indoor office</subject><subject>large‐scale fading</subject><subject>millimeter wave</subject><subject>Millimeter waves</subject><subject>Modelling</subject><subject>Wave propagation</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1096-4290</issn><issn>1099-047X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTph6cps6Sym1FVrcKLgLaSapqTOTmoyWduUj-Iw-iWnHtXDgHPi_c_sRuiQwIAD0pq61GVDKhThCPQJFkQEfvhwf6jzjtIBTdBbjCiBplPWQnbuqcrVpTfj5-t6oT4PXwa_VUrXON7j2palcs8SqKbF-VUHpRLpdp6oWM4on0x12TYrS-4C9tU4bbFMpJrgx7caHt3iOTqyqorn4y330fD9-Gk2z2ePkYXQ3yzQVVGSUF8ymuyAn2i4MLUrKiMpvaUmV0EYwngtLCAPN89IOARa64IbzklvFhlSwPrrq5qYn3j9MbOXKf4QmrZTJlEIAA8ETdd1ROvgYg7FyHVytwlYSkHsf5d5HefAxwaSDN64y239IOZ-Pxl3PL0GjddI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Seker, Cihat</creator><creator>Guneser, Muhammet Tahir</creator><creator>Arslan, Huseyin</creator><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9474-7372</orcidid><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid><orcidid>https://orcid.org/0000-0002-9680-4622</orcidid></search><sort><creationdate>202012</creationdate><title>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</title><author>Seker, Cihat ; Guneser, Muhammet Tahir ; Arslan, Huseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>32 GHz</topic><topic>Bandwidths</topic><topic>channel parameters</topic><topic>Indoor environments</topic><topic>indoor office</topic><topic>large‐scale fading</topic><topic>millimeter wave</topic><topic>Millimeter waves</topic><topic>Modelling</topic><topic>Wave propagation</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seker, Cihat</creatorcontrib><creatorcontrib>Guneser, Muhammet Tahir</creatorcontrib><creatorcontrib>Arslan, Huseyin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of RF and microwave computer-aided engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seker, Cihat</au><au>Guneser, Muhammet Tahir</au><au>Arslan, Huseyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</atitle><jtitle>International journal of RF and microwave computer-aided engineering</jtitle><date>2020-12</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><epage>n/a</epage><issn>1096-4290</issn><eissn>1099-047X</eissn><abstract>Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mmce.22455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9474-7372</orcidid><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid><orcidid>https://orcid.org/0000-0002-9680-4622</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-4290 |
ispartof | International journal of RF and microwave computer-aided engineering, 2020-12, Vol.30 (12), p.n/a |
issn | 1096-4290 1099-047X |
language | eng |
recordid | cdi_proquest_journals_2459503054 |
source | Access via Wiley Online Library |
subjects | 32 GHz Bandwidths channel parameters Indoor environments indoor office large‐scale fading millimeter wave Millimeter waves Modelling Wave propagation Wireless communications Wireless networks |
title | Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter%E2%80%90wave%20propagation%20modeling%20and%20characterization%20at%2032%20GHz%20in%20indoor%20office%20for%205G%20networks&rft.jtitle=International%20journal%20of%20RF%20and%20microwave%20computer-aided%20engineering&rft.au=Seker,%20Cihat&rft.date=2020-12&rft.volume=30&rft.issue=12&rft.epage=n/a&rft.issn=1096-4290&rft.eissn=1099-047X&rft_id=info:doi/10.1002/mmce.22455&rft_dat=%3Cproquest_cross%3E2459503054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459503054&rft_id=info:pmid/&rfr_iscdi=true |