Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks

Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of RF and microwave computer-aided engineering 2020-12, Vol.30 (12), p.n/a
Hauptverfasser: Seker, Cihat, Guneser, Muhammet Tahir, Arslan, Huseyin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title International journal of RF and microwave computer-aided engineering
container_volume 30
creator Seker, Cihat
Guneser, Muhammet Tahir
Arslan, Huseyin
description Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.
doi_str_mv 10.1002/mmce.22455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459503054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459503054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgTph6cps6Sym1FVrcKLgLaSapqTOTmoyWduUj-Iw-iWnHtXDgHPi_c_sRuiQwIAD0pq61GVDKhThCPQJFkQEfvhwf6jzjtIBTdBbjCiBplPWQnbuqcrVpTfj5-t6oT4PXwa_VUrXON7j2palcs8SqKbF-VUHpRLpdp6oWM4on0x12TYrS-4C9tU4bbFMpJrgx7caHt3iOTqyqorn4y330fD9-Gk2z2ePkYXQ3yzQVVGSUF8ymuyAn2i4MLUrKiMpvaUmV0EYwngtLCAPN89IOARa64IbzklvFhlSwPrrq5qYn3j9MbOXKf4QmrZTJlEIAA8ETdd1ROvgYg7FyHVytwlYSkHsf5d5HefAxwaSDN64y239IOZ-Pxl3PL0GjddI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459503054</pqid></control><display><type>article</type><title>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</title><source>Access via Wiley Online Library</source><creator>Seker, Cihat ; Guneser, Muhammet Tahir ; Arslan, Huseyin</creator><creatorcontrib>Seker, Cihat ; Guneser, Muhammet Tahir ; Arslan, Huseyin</creatorcontrib><description>Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.</description><identifier>ISSN: 1096-4290</identifier><identifier>EISSN: 1099-047X</identifier><identifier>DOI: 10.1002/mmce.22455</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>32 GHz ; Bandwidths ; channel parameters ; Indoor environments ; indoor office ; large‐scale fading ; millimeter wave ; Millimeter waves ; Modelling ; Wave propagation ; Wireless communications ; Wireless networks</subject><ispartof>International journal of RF and microwave computer-aided engineering, 2020-12, Vol.30 (12), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</citedby><cites>FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</cites><orcidid>0000-0001-9474-7372 ; 0000-0003-3502-2034 ; 0000-0002-9680-4622</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmmce.22455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmmce.22455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Seker, Cihat</creatorcontrib><creatorcontrib>Guneser, Muhammet Tahir</creatorcontrib><creatorcontrib>Arslan, Huseyin</creatorcontrib><title>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</title><title>International journal of RF and microwave computer-aided engineering</title><description>Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.</description><subject>32 GHz</subject><subject>Bandwidths</subject><subject>channel parameters</subject><subject>Indoor environments</subject><subject>indoor office</subject><subject>large‐scale fading</subject><subject>millimeter wave</subject><subject>Millimeter waves</subject><subject>Modelling</subject><subject>Wave propagation</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1096-4290</issn><issn>1099-047X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgTph6cps6Sym1FVrcKLgLaSapqTOTmoyWduUj-Iw-iWnHtXDgHPi_c_sRuiQwIAD0pq61GVDKhThCPQJFkQEfvhwf6jzjtIBTdBbjCiBplPWQnbuqcrVpTfj5-t6oT4PXwa_VUrXON7j2palcs8SqKbF-VUHpRLpdp6oWM4on0x12TYrS-4C9tU4bbFMpJrgx7caHt3iOTqyqorn4y330fD9-Gk2z2ePkYXQ3yzQVVGSUF8ymuyAn2i4MLUrKiMpvaUmV0EYwngtLCAPN89IOARa64IbzklvFhlSwPrrq5qYn3j9MbOXKf4QmrZTJlEIAA8ETdd1ROvgYg7FyHVytwlYSkHsf5d5HefAxwaSDN64y239IOZ-Pxl3PL0GjddI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Seker, Cihat</creator><creator>Guneser, Muhammet Tahir</creator><creator>Arslan, Huseyin</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9474-7372</orcidid><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid><orcidid>https://orcid.org/0000-0002-9680-4622</orcidid></search><sort><creationdate>202012</creationdate><title>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</title><author>Seker, Cihat ; Guneser, Muhammet Tahir ; Arslan, Huseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2525-2493f923061cfbe29d231a682d2a5ce53465f1130c46df700bc94e44d4fa37253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>32 GHz</topic><topic>Bandwidths</topic><topic>channel parameters</topic><topic>Indoor environments</topic><topic>indoor office</topic><topic>large‐scale fading</topic><topic>millimeter wave</topic><topic>Millimeter waves</topic><topic>Modelling</topic><topic>Wave propagation</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seker, Cihat</creatorcontrib><creatorcontrib>Guneser, Muhammet Tahir</creatorcontrib><creatorcontrib>Arslan, Huseyin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of RF and microwave computer-aided engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seker, Cihat</au><au>Guneser, Muhammet Tahir</au><au>Arslan, Huseyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks</atitle><jtitle>International journal of RF and microwave computer-aided engineering</jtitle><date>2020-12</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><epage>n/a</epage><issn>1096-4290</issn><eissn>1099-047X</eissn><abstract>Since it has a great bandwidth that supports gigabit communication, it is considered to use the millimeter‐wave (mmWave) band in the fifth generation (5G) wireless communication. Therefore, an efficient, reliable, and accurate channel model is of vital importance in mmWave bands for indoor environments, especially in the 31.8 to 33.4 GHz band allocated by ITU for 5G communications. In this article, we performed modeling and characterization campaign at the 32 GHz in a typical indoor office environment on fourth floor of the Engineering Faculty in University of Karabuk, Turkey. The obtained results provide large‐scale fadings such as path loss, shadowing, root mean square (RMS) delay spread, RMS angular spread, power angular spectrum, number of clusters, and Ricean K‐factor in an open‐plan indoor environment. Power angular spectrum is used to comprehend the propagation structure. We propose that the results obtained in this study will play a key role in simulating and planning systems at 32 GHz for 5G wireless communication.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mmce.22455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9474-7372</orcidid><orcidid>https://orcid.org/0000-0003-3502-2034</orcidid><orcidid>https://orcid.org/0000-0002-9680-4622</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-4290
ispartof International journal of RF and microwave computer-aided engineering, 2020-12, Vol.30 (12), p.n/a
issn 1096-4290
1099-047X
language eng
recordid cdi_proquest_journals_2459503054
source Access via Wiley Online Library
subjects 32 GHz
Bandwidths
channel parameters
Indoor environments
indoor office
large‐scale fading
millimeter wave
Millimeter waves
Modelling
Wave propagation
Wireless communications
Wireless networks
title Millimeter‐wave propagation modeling and characterization at 32 GHz in indoor office for 5G networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T02%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Millimeter%E2%80%90wave%20propagation%20modeling%20and%20characterization%20at%2032%20GHz%20in%20indoor%20office%20for%205G%20networks&rft.jtitle=International%20journal%20of%20RF%20and%20microwave%20computer-aided%20engineering&rft.au=Seker,%20Cihat&rft.date=2020-12&rft.volume=30&rft.issue=12&rft.epage=n/a&rft.issn=1096-4290&rft.eissn=1099-047X&rft_id=info:doi/10.1002/mmce.22455&rft_dat=%3Cproquest_cross%3E2459503054%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459503054&rft_id=info:pmid/&rfr_iscdi=true