Elastocaloric properties of thermoplastic polyurethane

Very few studies have explored the elastocaloric effect of elastomers other than natural rubber (NR). The aim of the present article is thus to evaluate the elastocaloric properties of a thermoplastic polyurethane (TPU) in terms of microstructural characteristics and thermoelastic coupling. Calorime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-11, Vol.117 (19)
Hauptverfasser: Coativy, Gildas, Haissoune, Hiba, Seveyrat, Laurence, Sebald, Gaël, Chazeau, Laurent, Chenal, Jean-Marc, Lebrun, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 117
creator Coativy, Gildas
Haissoune, Hiba
Seveyrat, Laurence
Sebald, Gaël
Chazeau, Laurent
Chenal, Jean-Marc
Lebrun, Laurent
description Very few studies have explored the elastocaloric effect of elastomers other than natural rubber (NR). The aim of the present article is thus to evaluate the elastocaloric properties of a thermoplastic polyurethane (TPU) in terms of microstructural characteristics and thermoelastic coupling. Calorimetric measurements showed two successive peaks at 240 K and 282 K, attributed to the crystallization and melting of soft segments, respectively. X-ray diffraction indicated that TPU exhibited a fully reversible strain-induced crystallization at room temperature. Thermomechanical experiments performed at different elongations revealed a minimum adiabatic temperature variation of about −8 K after retraction of a sample initially elongated at λ = 5. This is comparable to NR performances. However, for cycles carried out between λ = 1 and λ  = 5, tensile stress/elongation curves showed a non-elastic behavior of TPU. A pseudo-elastic response was obtained for cyclic elongation when unloading was incomplete, in our case, when λ was between 3 and 5. The recorded peak-to-peak temperature variation decreased from 4.5 K to 3.3 K when the number of cycles was increased to 5000. Despite the fact that the issue of fatigue resistance for TPU needs to be addressed, this work opens new perspectives for studying the elastocaloric properties of various polyurethanes (whether crosslinked or thermoplastic) as well as other materials with a tendency for strain-induced crystallization, such as polychloroprene, hydrogenated acrylonitrile butadiene rubber, and others.
doi_str_mv 10.1063/5.0023520
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2459470101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459470101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9f2bba0cdfac8b1bd1388660a47bb755aab54c648cd94b321416c4bae7e3dbbb3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HBk8LWmXzt7rGUaoWCFz2HJJulW7bNmqSF_nt3abF3T8PMPDzMvIQ8IkwRJHsVUwDKBIUrMkLI84whFtdkBAAsk6XAW3IX46ZvBWVsROSi1TF5q1sfGjvpgu9cSI2LE19P0tqFre8GYtj59rgPLq31zt2Tm1q30T2c65h8vy2-5sts9fn-MZ-tMstKmbKypsZosFWtbWHQVMiKQkrQPDcmF0JrI7iVvLBVyQ2jyFFabrTLHauMMWxMnk_etW5VF5qtDkfldaOWs5UaZsAoCFaIA_bs04ntn_jZu5jUxu_Drj9PUS5KngMCXow2-BiDq_-0CGqIUAl1jrBnX05stE3SqfG7_8EHHy6g6qqa_QIVz37i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459470101</pqid></control><display><type>article</type><title>Elastocaloric properties of thermoplastic polyurethane</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Coativy, Gildas ; Haissoune, Hiba ; Seveyrat, Laurence ; Sebald, Gaël ; Chazeau, Laurent ; Chenal, Jean-Marc ; Lebrun, Laurent</creator><creatorcontrib>Coativy, Gildas ; Haissoune, Hiba ; Seveyrat, Laurence ; Sebald, Gaël ; Chazeau, Laurent ; Chenal, Jean-Marc ; Lebrun, Laurent</creatorcontrib><description>Very few studies have explored the elastocaloric effect of elastomers other than natural rubber (NR). The aim of the present article is thus to evaluate the elastocaloric properties of a thermoplastic polyurethane (TPU) in terms of microstructural characteristics and thermoelastic coupling. Calorimetric measurements showed two successive peaks at 240 K and 282 K, attributed to the crystallization and melting of soft segments, respectively. X-ray diffraction indicated that TPU exhibited a fully reversible strain-induced crystallization at room temperature. Thermomechanical experiments performed at different elongations revealed a minimum adiabatic temperature variation of about −8 K after retraction of a sample initially elongated at λ = 5. This is comparable to NR performances. However, for cycles carried out between λ = 1 and λ  = 5, tensile stress/elongation curves showed a non-elastic behavior of TPU. A pseudo-elastic response was obtained for cyclic elongation when unloading was incomplete, in our case, when λ was between 3 and 5. The recorded peak-to-peak temperature variation decreased from 4.5 K to 3.3 K when the number of cycles was increased to 5000. Despite the fact that the issue of fatigue resistance for TPU needs to be addressed, this work opens new perspectives for studying the elastocaloric properties of various polyurethanes (whether crosslinked or thermoplastic) as well as other materials with a tendency for strain-induced crystallization, such as polychloroprene, hydrogenated acrylonitrile butadiene rubber, and others.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0023520</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Butadiene ; Crosslinking ; Crystallization ; Elasticity ; Elongation ; Engineering Sciences ; Fatigue strength ; Mechanics ; Mechanics of materials ; Natural rubber ; Neoprene ; Polyurethane resins ; Properties (attributes) ; Room temperature ; Tensile stress ; Urethane thermoplastic elastomers</subject><ispartof>Applied physics letters, 2020-11, Vol.117 (19)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9f2bba0cdfac8b1bd1388660a47bb755aab54c648cd94b321416c4bae7e3dbbb3</citedby><cites>FETCH-LOGICAL-c396t-9f2bba0cdfac8b1bd1388660a47bb755aab54c648cd94b321416c4bae7e3dbbb3</cites><orcidid>0000-0002-4026-7856 ; 0000-0002-3831-2590 ; 0000-0002-9447-1780 ; 0000-0003-4725-3489 ; 0000-0003-1390-8686 ; 0000-0001-7131-5972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0023520$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://insa-lyon.hal.science/hal-03205385$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coativy, Gildas</creatorcontrib><creatorcontrib>Haissoune, Hiba</creatorcontrib><creatorcontrib>Seveyrat, Laurence</creatorcontrib><creatorcontrib>Sebald, Gaël</creatorcontrib><creatorcontrib>Chazeau, Laurent</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Lebrun, Laurent</creatorcontrib><title>Elastocaloric properties of thermoplastic polyurethane</title><title>Applied physics letters</title><description>Very few studies have explored the elastocaloric effect of elastomers other than natural rubber (NR). The aim of the present article is thus to evaluate the elastocaloric properties of a thermoplastic polyurethane (TPU) in terms of microstructural characteristics and thermoelastic coupling. Calorimetric measurements showed two successive peaks at 240 K and 282 K, attributed to the crystallization and melting of soft segments, respectively. X-ray diffraction indicated that TPU exhibited a fully reversible strain-induced crystallization at room temperature. Thermomechanical experiments performed at different elongations revealed a minimum adiabatic temperature variation of about −8 K after retraction of a sample initially elongated at λ = 5. This is comparable to NR performances. However, for cycles carried out between λ = 1 and λ  = 5, tensile stress/elongation curves showed a non-elastic behavior of TPU. A pseudo-elastic response was obtained for cyclic elongation when unloading was incomplete, in our case, when λ was between 3 and 5. The recorded peak-to-peak temperature variation decreased from 4.5 K to 3.3 K when the number of cycles was increased to 5000. Despite the fact that the issue of fatigue resistance for TPU needs to be addressed, this work opens new perspectives for studying the elastocaloric properties of various polyurethanes (whether crosslinked or thermoplastic) as well as other materials with a tendency for strain-induced crystallization, such as polychloroprene, hydrogenated acrylonitrile butadiene rubber, and others.</description><subject>Applied physics</subject><subject>Butadiene</subject><subject>Crosslinking</subject><subject>Crystallization</subject><subject>Elasticity</subject><subject>Elongation</subject><subject>Engineering Sciences</subject><subject>Fatigue strength</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Natural rubber</subject><subject>Neoprene</subject><subject>Polyurethane resins</subject><subject>Properties (attributes)</subject><subject>Room temperature</subject><subject>Tensile stress</subject><subject>Urethane thermoplastic elastomers</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HBk8LWmXzt7rGUaoWCFz2HJJulW7bNmqSF_nt3abF3T8PMPDzMvIQ8IkwRJHsVUwDKBIUrMkLI84whFtdkBAAsk6XAW3IX46ZvBWVsROSi1TF5q1sfGjvpgu9cSI2LE19P0tqFre8GYtj59rgPLq31zt2Tm1q30T2c65h8vy2-5sts9fn-MZ-tMstKmbKypsZosFWtbWHQVMiKQkrQPDcmF0JrI7iVvLBVyQ2jyFFabrTLHauMMWxMnk_etW5VF5qtDkfldaOWs5UaZsAoCFaIA_bs04ntn_jZu5jUxu_Drj9PUS5KngMCXow2-BiDq_-0CGqIUAl1jrBnX05stE3SqfG7_8EHHy6g6qqa_QIVz37i</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Coativy, Gildas</creator><creator>Haissoune, Hiba</creator><creator>Seveyrat, Laurence</creator><creator>Sebald, Gaël</creator><creator>Chazeau, Laurent</creator><creator>Chenal, Jean-Marc</creator><creator>Lebrun, Laurent</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4026-7856</orcidid><orcidid>https://orcid.org/0000-0002-3831-2590</orcidid><orcidid>https://orcid.org/0000-0002-9447-1780</orcidid><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0003-1390-8686</orcidid><orcidid>https://orcid.org/0000-0001-7131-5972</orcidid></search><sort><creationdate>20201109</creationdate><title>Elastocaloric properties of thermoplastic polyurethane</title><author>Coativy, Gildas ; Haissoune, Hiba ; Seveyrat, Laurence ; Sebald, Gaël ; Chazeau, Laurent ; Chenal, Jean-Marc ; Lebrun, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9f2bba0cdfac8b1bd1388660a47bb755aab54c648cd94b321416c4bae7e3dbbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Butadiene</topic><topic>Crosslinking</topic><topic>Crystallization</topic><topic>Elasticity</topic><topic>Elongation</topic><topic>Engineering Sciences</topic><topic>Fatigue strength</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Natural rubber</topic><topic>Neoprene</topic><topic>Polyurethane resins</topic><topic>Properties (attributes)</topic><topic>Room temperature</topic><topic>Tensile stress</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coativy, Gildas</creatorcontrib><creatorcontrib>Haissoune, Hiba</creatorcontrib><creatorcontrib>Seveyrat, Laurence</creatorcontrib><creatorcontrib>Sebald, Gaël</creatorcontrib><creatorcontrib>Chazeau, Laurent</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Lebrun, Laurent</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coativy, Gildas</au><au>Haissoune, Hiba</au><au>Seveyrat, Laurence</au><au>Sebald, Gaël</au><au>Chazeau, Laurent</au><au>Chenal, Jean-Marc</au><au>Lebrun, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elastocaloric properties of thermoplastic polyurethane</atitle><jtitle>Applied physics letters</jtitle><date>2020-11-09</date><risdate>2020</risdate><volume>117</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Very few studies have explored the elastocaloric effect of elastomers other than natural rubber (NR). The aim of the present article is thus to evaluate the elastocaloric properties of a thermoplastic polyurethane (TPU) in terms of microstructural characteristics and thermoelastic coupling. Calorimetric measurements showed two successive peaks at 240 K and 282 K, attributed to the crystallization and melting of soft segments, respectively. X-ray diffraction indicated that TPU exhibited a fully reversible strain-induced crystallization at room temperature. Thermomechanical experiments performed at different elongations revealed a minimum adiabatic temperature variation of about −8 K after retraction of a sample initially elongated at λ = 5. This is comparable to NR performances. However, for cycles carried out between λ = 1 and λ  = 5, tensile stress/elongation curves showed a non-elastic behavior of TPU. A pseudo-elastic response was obtained for cyclic elongation when unloading was incomplete, in our case, when λ was between 3 and 5. The recorded peak-to-peak temperature variation decreased from 4.5 K to 3.3 K when the number of cycles was increased to 5000. Despite the fact that the issue of fatigue resistance for TPU needs to be addressed, this work opens new perspectives for studying the elastocaloric properties of various polyurethanes (whether crosslinked or thermoplastic) as well as other materials with a tendency for strain-induced crystallization, such as polychloroprene, hydrogenated acrylonitrile butadiene rubber, and others.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023520</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-4026-7856</orcidid><orcidid>https://orcid.org/0000-0002-3831-2590</orcidid><orcidid>https://orcid.org/0000-0002-9447-1780</orcidid><orcidid>https://orcid.org/0000-0003-4725-3489</orcidid><orcidid>https://orcid.org/0000-0003-1390-8686</orcidid><orcidid>https://orcid.org/0000-0001-7131-5972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-11, Vol.117 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2459470101
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Butadiene
Crosslinking
Crystallization
Elasticity
Elongation
Engineering Sciences
Fatigue strength
Mechanics
Mechanics of materials
Natural rubber
Neoprene
Polyurethane resins
Properties (attributes)
Room temperature
Tensile stress
Urethane thermoplastic elastomers
title Elastocaloric properties of thermoplastic polyurethane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elastocaloric%20properties%20of%20thermoplastic%20polyurethane&rft.jtitle=Applied%20physics%20letters&rft.au=Coativy,%20Gildas&rft.date=2020-11-09&rft.volume=117&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0023520&rft_dat=%3Cproquest_hal_p%3E2459470101%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459470101&rft_id=info:pmid/&rfr_iscdi=true