Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant
Aims To obtain and investigate the potential mechanism for GA3 production in Fusarium fujikuroi GA‐251, a high GA3 producer. Methods and Results Fusarium fujikuroi IMI 58289 was bred with Cobalt‐60 (60Co) radiation and lithium chloride treatment. The best mutant strain GA‐251 was obtained for the su...
Gespeichert in:
Veröffentlicht in: | Journal of applied microbiology 2020-12, Vol.129 (6), p.1620-1632 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1632 |
---|---|
container_issue | 6 |
container_start_page | 1620 |
container_title | Journal of applied microbiology |
container_volume | 129 |
creator | Zhang, B. Lei, Z. Liu, Z.‐Q. Zheng, Y.‐G. |
description | Aims
To obtain and investigate the potential mechanism for GA3 production in Fusarium fujikuroi GA‐251, a high GA3 producer.
Methods and Results
Fusarium fujikuroi IMI 58289 was bred with Cobalt‐60 (60Co) radiation and lithium chloride treatment. The best mutant strain GA‐251 was obtained for the subsequent optimization of fermentation conditions. The yield of GA3 by GA‐251 was 2100 mg l−1, while the wild‐type strain was 100 mg l−1, which is a 21‐fold increase in the yield. To elucidate the mechanism of high GA3 yield of GA‐251, the genome was sequenced and compared with wild‐type strain IMI 58289. The results showed 2295 single nucleotide polymorphisms, 1242 small indels and 30 structural variants. These mutations were analysed and enriched in the MAPK signalling pathway, the mRNA surveillance pathway and endocytosis. The potential reasons for the improved GA3 biosynthesis were investigated.
Conclusions
The potential mechanism of high GA3 yield was attributed to endocytosis pathway and histone modification proteins family.
Significance and Impact of the Study
A mutant strain GA‐251 in this work that could potentially be utilized in the industrial yield of GA3. The comparative genome analysis would shed light onto the mechanism of yield improvement and be a theoretical guide for further metabolic engineering. |
doi_str_mv | 10.1111/jam.14746 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2459088206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459088206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2686-a3be953da693e88e2356efaa07c4fc7f97bb6f79c344d31c4d3c58d486bf60283</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqUw8AeQJSaGtI4dO85YVRSKihiA2bITGznkozgxVf49pgE2briz5EfPnV4ALmM0j0MtSlnP4yRN2BGYxoTRCLMUHx_eSURRiifgrOtKhGKCKDsFE4Ip4RSxKXje1DvXfupaNz1sDXyzSmmnq8o2MHwUPu9t20A1QAkbva8GaLu2kr0u4Np30llfQ-NL--5da2Hte9n05-DEyKrTFz9zBl7Xty-r-2j7dLdZLbdRjhlnkSRKZ5QUkmVEc64xoUwbKVGaJyZPTZYqxUya5SRJChLnoeWUFwlnyjCEOZmB69EbDv3wuutF2XrXhJUCJzRDnGPEAnUzUrlru85pI3bO1tINIkbiOz4R4hOH-AJ79WP0qtbFH_mbVwAWI7C3lR7-N4mH5eOo_AK9CHoy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459088206</pqid></control><display><type>article</type><title>Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, B. ; Lei, Z. ; Liu, Z.‐Q. ; Zheng, Y.‐G.</creator><creatorcontrib>Zhang, B. ; Lei, Z. ; Liu, Z.‐Q. ; Zheng, Y.‐G.</creatorcontrib><description>Aims
To obtain and investigate the potential mechanism for GA3 production in Fusarium fujikuroi GA‐251, a high GA3 producer.
Methods and Results
Fusarium fujikuroi IMI 58289 was bred with Cobalt‐60 (60Co) radiation and lithium chloride treatment. The best mutant strain GA‐251 was obtained for the subsequent optimization of fermentation conditions. The yield of GA3 by GA‐251 was 2100 mg l−1, while the wild‐type strain was 100 mg l−1, which is a 21‐fold increase in the yield. To elucidate the mechanism of high GA3 yield of GA‐251, the genome was sequenced and compared with wild‐type strain IMI 58289. The results showed 2295 single nucleotide polymorphisms, 1242 small indels and 30 structural variants. These mutations were analysed and enriched in the MAPK signalling pathway, the mRNA surveillance pathway and endocytosis. The potential reasons for the improved GA3 biosynthesis were investigated.
Conclusions
The potential mechanism of high GA3 yield was attributed to endocytosis pathway and histone modification proteins family.
Significance and Impact of the Study
A mutant strain GA‐251 in this work that could potentially be utilized in the industrial yield of GA3. The comparative genome analysis would shed light onto the mechanism of yield improvement and be a theoretical guide for further metabolic engineering.</description><identifier>ISSN: 1364-5072</identifier><identifier>EISSN: 1365-2672</identifier><identifier>DOI: 10.1111/jam.14746</identifier><identifier>PMID: 32538506</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Biosynthesis ; Cobalt ; Endocytosis ; Fermentation ; fermentation optimization ; Fusarium - genetics ; Fusarium - metabolism ; Fusarium fujikuroi ; genome analysis ; Genome, Fungal - genetics ; Genomes ; Gibberellins ; Gibberellins - metabolism ; Histones ; Lithium ; Lithium chloride ; MAP kinase ; Metabolic Engineering ; Metabolic Networks and Pathways - genetics ; mRNA ; Mutagenesis ; Mutants ; Mutation ; Nucleotides ; Optimization ; Radiation ; Signal transduction ; Single-nucleotide polymorphism ; Yield</subject><ispartof>Journal of applied microbiology, 2020-12, Vol.129 (6), p.1620-1632</ispartof><rights>2020 The Society for Applied Microbiology</rights><rights>2020 The Society for Applied Microbiology.</rights><rights>Copyright © 2020 The Society for Applied Microbiology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2686-a3be953da693e88e2356efaa07c4fc7f97bb6f79c344d31c4d3c58d486bf60283</citedby><cites>FETCH-LOGICAL-c2686-a3be953da693e88e2356efaa07c4fc7f97bb6f79c344d31c4d3c58d486bf60283</cites><orcidid>0000-0003-3259-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjam.14746$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjam.14746$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32538506$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Lei, Z.</creatorcontrib><creatorcontrib>Liu, Z.‐Q.</creatorcontrib><creatorcontrib>Zheng, Y.‐G.</creatorcontrib><title>Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant</title><title>Journal of applied microbiology</title><addtitle>J Appl Microbiol</addtitle><description>Aims
To obtain and investigate the potential mechanism for GA3 production in Fusarium fujikuroi GA‐251, a high GA3 producer.
Methods and Results
Fusarium fujikuroi IMI 58289 was bred with Cobalt‐60 (60Co) radiation and lithium chloride treatment. The best mutant strain GA‐251 was obtained for the subsequent optimization of fermentation conditions. The yield of GA3 by GA‐251 was 2100 mg l−1, while the wild‐type strain was 100 mg l−1, which is a 21‐fold increase in the yield. To elucidate the mechanism of high GA3 yield of GA‐251, the genome was sequenced and compared with wild‐type strain IMI 58289. The results showed 2295 single nucleotide polymorphisms, 1242 small indels and 30 structural variants. These mutations were analysed and enriched in the MAPK signalling pathway, the mRNA surveillance pathway and endocytosis. The potential reasons for the improved GA3 biosynthesis were investigated.
Conclusions
The potential mechanism of high GA3 yield was attributed to endocytosis pathway and histone modification proteins family.
Significance and Impact of the Study
A mutant strain GA‐251 in this work that could potentially be utilized in the industrial yield of GA3. The comparative genome analysis would shed light onto the mechanism of yield improvement and be a theoretical guide for further metabolic engineering.</description><subject>Biosynthesis</subject><subject>Cobalt</subject><subject>Endocytosis</subject><subject>Fermentation</subject><subject>fermentation optimization</subject><subject>Fusarium - genetics</subject><subject>Fusarium - metabolism</subject><subject>Fusarium fujikuroi</subject><subject>genome analysis</subject><subject>Genome, Fungal - genetics</subject><subject>Genomes</subject><subject>Gibberellins</subject><subject>Gibberellins - metabolism</subject><subject>Histones</subject><subject>Lithium</subject><subject>Lithium chloride</subject><subject>MAP kinase</subject><subject>Metabolic Engineering</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>mRNA</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Optimization</subject><subject>Radiation</subject><subject>Signal transduction</subject><subject>Single-nucleotide polymorphism</subject><subject>Yield</subject><issn>1364-5072</issn><issn>1365-2672</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EoqUw8AeQJSaGtI4dO85YVRSKihiA2bITGznkozgxVf49pgE2briz5EfPnV4ALmM0j0MtSlnP4yRN2BGYxoTRCLMUHx_eSURRiifgrOtKhGKCKDsFE4Ip4RSxKXje1DvXfupaNz1sDXyzSmmnq8o2MHwUPu9t20A1QAkbva8GaLu2kr0u4Np30llfQ-NL--5da2Hte9n05-DEyKrTFz9zBl7Xty-r-2j7dLdZLbdRjhlnkSRKZ5QUkmVEc64xoUwbKVGaJyZPTZYqxUya5SRJChLnoeWUFwlnyjCEOZmB69EbDv3wuutF2XrXhJUCJzRDnGPEAnUzUrlru85pI3bO1tINIkbiOz4R4hOH-AJ79WP0qtbFH_mbVwAWI7C3lR7-N4mH5eOo_AK9CHoy</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Zhang, B.</creator><creator>Lei, Z.</creator><creator>Liu, Z.‐Q.</creator><creator>Zheng, Y.‐G.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0003-3259-6796</orcidid></search><sort><creationdate>202012</creationdate><title>Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant</title><author>Zhang, B. ; Lei, Z. ; Liu, Z.‐Q. ; Zheng, Y.‐G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2686-a3be953da693e88e2356efaa07c4fc7f97bb6f79c344d31c4d3c58d486bf60283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biosynthesis</topic><topic>Cobalt</topic><topic>Endocytosis</topic><topic>Fermentation</topic><topic>fermentation optimization</topic><topic>Fusarium - genetics</topic><topic>Fusarium - metabolism</topic><topic>Fusarium fujikuroi</topic><topic>genome analysis</topic><topic>Genome, Fungal - genetics</topic><topic>Genomes</topic><topic>Gibberellins</topic><topic>Gibberellins - metabolism</topic><topic>Histones</topic><topic>Lithium</topic><topic>Lithium chloride</topic><topic>MAP kinase</topic><topic>Metabolic Engineering</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>mRNA</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Optimization</topic><topic>Radiation</topic><topic>Signal transduction</topic><topic>Single-nucleotide polymorphism</topic><topic>Yield</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, B.</creatorcontrib><creatorcontrib>Lei, Z.</creatorcontrib><creatorcontrib>Liu, Z.‐Q.</creatorcontrib><creatorcontrib>Zheng, Y.‐G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of applied microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, B.</au><au>Lei, Z.</au><au>Liu, Z.‐Q.</au><au>Zheng, Y.‐G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant</atitle><jtitle>Journal of applied microbiology</jtitle><addtitle>J Appl Microbiol</addtitle><date>2020-12</date><risdate>2020</risdate><volume>129</volume><issue>6</issue><spage>1620</spage><epage>1632</epage><pages>1620-1632</pages><issn>1364-5072</issn><eissn>1365-2672</eissn><abstract>Aims
To obtain and investigate the potential mechanism for GA3 production in Fusarium fujikuroi GA‐251, a high GA3 producer.
Methods and Results
Fusarium fujikuroi IMI 58289 was bred with Cobalt‐60 (60Co) radiation and lithium chloride treatment. The best mutant strain GA‐251 was obtained for the subsequent optimization of fermentation conditions. The yield of GA3 by GA‐251 was 2100 mg l−1, while the wild‐type strain was 100 mg l−1, which is a 21‐fold increase in the yield. To elucidate the mechanism of high GA3 yield of GA‐251, the genome was sequenced and compared with wild‐type strain IMI 58289. The results showed 2295 single nucleotide polymorphisms, 1242 small indels and 30 structural variants. These mutations were analysed and enriched in the MAPK signalling pathway, the mRNA surveillance pathway and endocytosis. The potential reasons for the improved GA3 biosynthesis were investigated.
Conclusions
The potential mechanism of high GA3 yield was attributed to endocytosis pathway and histone modification proteins family.
Significance and Impact of the Study
A mutant strain GA‐251 in this work that could potentially be utilized in the industrial yield of GA3. The comparative genome analysis would shed light onto the mechanism of yield improvement and be a theoretical guide for further metabolic engineering.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>32538506</pmid><doi>10.1111/jam.14746</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3259-6796</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5072 |
ispartof | Journal of applied microbiology, 2020-12, Vol.129 (6), p.1620-1632 |
issn | 1364-5072 1365-2672 |
language | eng |
recordid | cdi_proquest_journals_2459088206 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biosynthesis Cobalt Endocytosis Fermentation fermentation optimization Fusarium - genetics Fusarium - metabolism Fusarium fujikuroi genome analysis Genome, Fungal - genetics Genomes Gibberellins Gibberellins - metabolism Histones Lithium Lithium chloride MAP kinase Metabolic Engineering Metabolic Networks and Pathways - genetics mRNA Mutagenesis Mutants Mutation Nucleotides Optimization Radiation Signal transduction Single-nucleotide polymorphism Yield |
title | Improvement of gibberellin production by a newly isolated Fusarium fujikuroi mutant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A08%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20gibberellin%20production%20by%20a%20newly%20isolated%20Fusarium%20fujikuroi%20mutant&rft.jtitle=Journal%20of%20applied%20microbiology&rft.au=Zhang,%20B.&rft.date=2020-12&rft.volume=129&rft.issue=6&rft.spage=1620&rft.epage=1632&rft.pages=1620-1632&rft.issn=1364-5072&rft.eissn=1365-2672&rft_id=info:doi/10.1111/jam.14746&rft_dat=%3Cproquest_cross%3E2459088206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459088206&rft_id=info:pmid/32538506&rfr_iscdi=true |