Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport
We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-11, Vol.903 (2), p.82 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 82 |
container_title | The Astrophysical journal |
container_volume | 903 |
creator | Iwakami, Wakana Okawa, Hirotada Nagakura, Hiroki Harada, Akira Furusawa, Shun Sumiyoshi, Kosuke Matsufuru, Hideo Yamada, Shoichi |
description | We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there. |
doi_str_mv | 10.3847/1538-4357/abb8cf |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2458985488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458985488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</originalsourceid><addsrcrecordid>eNp1kMFLwzAYxYMoOKd3jwGv1iVN06ZHHZsKQweb4C2kbUI7sqQmqTL_Af9tWyp6ku8Qvpf3Hh8_AC4xuiEsyWaYEhYlhGYzURSsVEdg8isdgwlCKIlSkr2egjPvd8Ma5_kEfG2afadFaKzx0CoYagkXwukDXFsfCtuZUsJ1LbwcfufWyai0Wou2FzZdK52x70LCxsBt7aSMqmYvje_bhIabVvThjybUcNlpDe-sDp97YQx8kl1wjbFw64TxrXXhHJwoob28-Hmn4GW52M4fotXz_eP8dhWVhKIQYRXHVZEnKaaZLHEqc4po1gsKx1RggiqUDpOnSuWEMSFZhrFQtBI4JxiRKbgae1tn3zrpA9_ZzvXXeh4nlOWMJoz1LjS6Sme9d1Lx1jV74Q4cIz7g5gNbPrDlI-4-cj1GGtv-df5r_wbzGYNP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458985488</pqid></control><display><type>article</type><title>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</title><source>IOP Publishing Free Content</source><creator>Iwakami, Wakana ; Okawa, Hirotada ; Nagakura, Hiroki ; Harada, Akira ; Furusawa, Shun ; Sumiyoshi, Kosuke ; Matsufuru, Hideo ; Yamada, Shoichi</creator><creatorcontrib>Iwakami, Wakana ; Okawa, Hirotada ; Nagakura, Hiroki ; Harada, Akira ; Furusawa, Shun ; Sumiyoshi, Kosuke ; Matsufuru, Hideo ; Yamada, Shoichi</creatorcontrib><description>We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb8cf</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Approximation ; Astrophysics ; Closures ; Collapse ; Compressibility ; Computational fluid dynamics ; Convection ; Core-collapse supernovae ; Eigenvalues ; Eigenvectors ; Energy flux ; Equations of state ; Euler-Lagrange equation ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Neutrinos ; Radiation ; Simulation ; Supernova ; Supernovae ; Tensors ; Three dimensional models</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.82</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</citedby><cites>FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</cites><orcidid>0000-0002-7205-6367 ; 0000-0003-1409-0695 ; 0000-0002-2166-5605 ; 0000-0003-4959-069X ; 0000-0002-9224-9449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb8cf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb8cf$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Iwakami, Wakana</creatorcontrib><creatorcontrib>Okawa, Hirotada</creatorcontrib><creatorcontrib>Nagakura, Hiroki</creatorcontrib><creatorcontrib>Harada, Akira</creatorcontrib><creatorcontrib>Furusawa, Shun</creatorcontrib><creatorcontrib>Sumiyoshi, Kosuke</creatorcontrib><creatorcontrib>Matsufuru, Hideo</creatorcontrib><creatorcontrib>Yamada, Shoichi</creatorcontrib><title>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.</description><subject>Approximation</subject><subject>Astrophysics</subject><subject>Closures</subject><subject>Collapse</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Core-collapse supernovae</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Energy flux</subject><subject>Equations of state</subject><subject>Euler-Lagrange equation</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Neutrinos</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Tensors</subject><subject>Three dimensional models</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAYxYMoOKd3jwGv1iVN06ZHHZsKQweb4C2kbUI7sqQmqTL_Af9tWyp6ku8Qvpf3Hh8_AC4xuiEsyWaYEhYlhGYzURSsVEdg8isdgwlCKIlSkr2egjPvd8Ma5_kEfG2afadFaKzx0CoYagkXwukDXFsfCtuZUsJ1LbwcfufWyai0Wou2FzZdK52x70LCxsBt7aSMqmYvje_bhIabVvThjybUcNlpDe-sDp97YQx8kl1wjbFw64TxrXXhHJwoob28-Hmn4GW52M4fotXz_eP8dhWVhKIQYRXHVZEnKaaZLHEqc4po1gsKx1RggiqUDpOnSuWEMSFZhrFQtBI4JxiRKbgae1tn3zrpA9_ZzvXXeh4nlOWMJoz1LjS6Sme9d1Lx1jV74Q4cIz7g5gNbPrDlI-4-cj1GGtv-df5r_wbzGYNP</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Iwakami, Wakana</creator><creator>Okawa, Hirotada</creator><creator>Nagakura, Hiroki</creator><creator>Harada, Akira</creator><creator>Furusawa, Shun</creator><creator>Sumiyoshi, Kosuke</creator><creator>Matsufuru, Hideo</creator><creator>Yamada, Shoichi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7205-6367</orcidid><orcidid>https://orcid.org/0000-0003-1409-0695</orcidid><orcidid>https://orcid.org/0000-0002-2166-5605</orcidid><orcidid>https://orcid.org/0000-0003-4959-069X</orcidid><orcidid>https://orcid.org/0000-0002-9224-9449</orcidid></search><sort><creationdate>20201101</creationdate><title>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</title><author>Iwakami, Wakana ; Okawa, Hirotada ; Nagakura, Hiroki ; Harada, Akira ; Furusawa, Shun ; Sumiyoshi, Kosuke ; Matsufuru, Hideo ; Yamada, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Astrophysics</topic><topic>Closures</topic><topic>Collapse</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Core-collapse supernovae</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Energy flux</topic><topic>Equations of state</topic><topic>Euler-Lagrange equation</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Neutrinos</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Tensors</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwakami, Wakana</creatorcontrib><creatorcontrib>Okawa, Hirotada</creatorcontrib><creatorcontrib>Nagakura, Hiroki</creatorcontrib><creatorcontrib>Harada, Akira</creatorcontrib><creatorcontrib>Furusawa, Shun</creatorcontrib><creatorcontrib>Sumiyoshi, Kosuke</creatorcontrib><creatorcontrib>Matsufuru, Hideo</creatorcontrib><creatorcontrib>Yamada, Shoichi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iwakami, Wakana</au><au>Okawa, Hirotada</au><au>Nagakura, Hiroki</au><au>Harada, Akira</au><au>Furusawa, Shun</au><au>Sumiyoshi, Kosuke</au><au>Matsufuru, Hideo</au><au>Yamada, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>82</spage><pages>82-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb8cf</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7205-6367</orcidid><orcidid>https://orcid.org/0000-0003-1409-0695</orcidid><orcidid>https://orcid.org/0000-0002-2166-5605</orcidid><orcidid>https://orcid.org/0000-0003-4959-069X</orcidid><orcidid>https://orcid.org/0000-0002-9224-9449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2020-11, Vol.903 (2), p.82 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2458985488 |
source | IOP Publishing Free Content |
subjects | Approximation Astrophysics Closures Collapse Compressibility Computational fluid dynamics Convection Core-collapse supernovae Eigenvalues Eigenvectors Energy flux Equations of state Euler-Lagrange equation Fluid flow Hydrodynamics Mathematical analysis Neutrinos Radiation Simulation Supernova Supernovae Tensors Three dimensional models |
title | Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20the%20Early%20Postbounce%20Phase%20of%20Core-collapse%20Supernovae%20in%20Three-dimensional%20Space%20with%20Full%20Boltzmann%20Neutrino%20Transport&rft.jtitle=The%20Astrophysical%20journal&rft.au=Iwakami,%20Wakana&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=82&rft.pages=82-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb8cf&rft_dat=%3Cproquest_O3W%3E2458985488%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458985488&rft_id=info:pmid/&rfr_iscdi=true |