Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport

We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-11, Vol.903 (2), p.82
Hauptverfasser: Iwakami, Wakana, Okawa, Hirotada, Nagakura, Hiroki, Harada, Akira, Furusawa, Shun, Sumiyoshi, Kosuke, Matsufuru, Hideo, Yamada, Shoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 82
container_title The Astrophysical journal
container_volume 903
creator Iwakami, Wakana
Okawa, Hirotada
Nagakura, Hiroki
Harada, Akira
Furusawa, Shun
Sumiyoshi, Kosuke
Matsufuru, Hideo
Yamada, Shoichi
description We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.
doi_str_mv 10.3847/1538-4357/abb8cf
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_journals_2458985488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458985488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</originalsourceid><addsrcrecordid>eNp1kMFLwzAYxYMoOKd3jwGv1iVN06ZHHZsKQweb4C2kbUI7sqQmqTL_Af9tWyp6ku8Qvpf3Hh8_AC4xuiEsyWaYEhYlhGYzURSsVEdg8isdgwlCKIlSkr2egjPvd8Ma5_kEfG2afadFaKzx0CoYagkXwukDXFsfCtuZUsJ1LbwcfufWyai0Wou2FzZdK52x70LCxsBt7aSMqmYvje_bhIabVvThjybUcNlpDe-sDp97YQx8kl1wjbFw64TxrXXhHJwoob28-Hmn4GW52M4fotXz_eP8dhWVhKIQYRXHVZEnKaaZLHEqc4po1gsKx1RggiqUDpOnSuWEMSFZhrFQtBI4JxiRKbgae1tn3zrpA9_ZzvXXeh4nlOWMJoz1LjS6Sme9d1Lx1jV74Q4cIz7g5gNbPrDlI-4-cj1GGtv-df5r_wbzGYNP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458985488</pqid></control><display><type>article</type><title>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</title><source>IOP Publishing Free Content</source><creator>Iwakami, Wakana ; Okawa, Hirotada ; Nagakura, Hiroki ; Harada, Akira ; Furusawa, Shun ; Sumiyoshi, Kosuke ; Matsufuru, Hideo ; Yamada, Shoichi</creator><creatorcontrib>Iwakami, Wakana ; Okawa, Hirotada ; Nagakura, Hiroki ; Harada, Akira ; Furusawa, Shun ; Sumiyoshi, Kosuke ; Matsufuru, Hideo ; Yamada, Shoichi</creatorcontrib><description>We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abb8cf</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Approximation ; Astrophysics ; Closures ; Collapse ; Compressibility ; Computational fluid dynamics ; Convection ; Core-collapse supernovae ; Eigenvalues ; Eigenvectors ; Energy flux ; Equations of state ; Euler-Lagrange equation ; Fluid flow ; Hydrodynamics ; Mathematical analysis ; Neutrinos ; Radiation ; Simulation ; Supernova ; Supernovae ; Tensors ; Three dimensional models</subject><ispartof>The Astrophysical journal, 2020-11, Vol.903 (2), p.82</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</citedby><cites>FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</cites><orcidid>0000-0002-7205-6367 ; 0000-0003-1409-0695 ; 0000-0002-2166-5605 ; 0000-0003-4959-069X ; 0000-0002-9224-9449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb8cf/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27923,27924,38889,53866</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abb8cf$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Iwakami, Wakana</creatorcontrib><creatorcontrib>Okawa, Hirotada</creatorcontrib><creatorcontrib>Nagakura, Hiroki</creatorcontrib><creatorcontrib>Harada, Akira</creatorcontrib><creatorcontrib>Furusawa, Shun</creatorcontrib><creatorcontrib>Sumiyoshi, Kosuke</creatorcontrib><creatorcontrib>Matsufuru, Hideo</creatorcontrib><creatorcontrib>Yamada, Shoichi</creatorcontrib><title>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.</description><subject>Approximation</subject><subject>Astrophysics</subject><subject>Closures</subject><subject>Collapse</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Convection</subject><subject>Core-collapse supernovae</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Energy flux</subject><subject>Equations of state</subject><subject>Euler-Lagrange equation</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Mathematical analysis</subject><subject>Neutrinos</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Supernova</subject><subject>Supernovae</subject><subject>Tensors</subject><subject>Three dimensional models</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAYxYMoOKd3jwGv1iVN06ZHHZsKQweb4C2kbUI7sqQmqTL_Af9tWyp6ku8Qvpf3Hh8_AC4xuiEsyWaYEhYlhGYzURSsVEdg8isdgwlCKIlSkr2egjPvd8Ma5_kEfG2afadFaKzx0CoYagkXwukDXFsfCtuZUsJ1LbwcfufWyai0Wou2FzZdK52x70LCxsBt7aSMqmYvje_bhIabVvThjybUcNlpDe-sDp97YQx8kl1wjbFw64TxrXXhHJwoob28-Hmn4GW52M4fotXz_eP8dhWVhKIQYRXHVZEnKaaZLHEqc4po1gsKx1RggiqUDpOnSuWEMSFZhrFQtBI4JxiRKbgae1tn3zrpA9_ZzvXXeh4nlOWMJoz1LjS6Sme9d1Lx1jV74Q4cIz7g5gNbPrDlI-4-cj1GGtv-df5r_wbzGYNP</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Iwakami, Wakana</creator><creator>Okawa, Hirotada</creator><creator>Nagakura, Hiroki</creator><creator>Harada, Akira</creator><creator>Furusawa, Shun</creator><creator>Sumiyoshi, Kosuke</creator><creator>Matsufuru, Hideo</creator><creator>Yamada, Shoichi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7205-6367</orcidid><orcidid>https://orcid.org/0000-0003-1409-0695</orcidid><orcidid>https://orcid.org/0000-0002-2166-5605</orcidid><orcidid>https://orcid.org/0000-0003-4959-069X</orcidid><orcidid>https://orcid.org/0000-0002-9224-9449</orcidid></search><sort><creationdate>20201101</creationdate><title>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</title><author>Iwakami, Wakana ; Okawa, Hirotada ; Nagakura, Hiroki ; Harada, Akira ; Furusawa, Shun ; Sumiyoshi, Kosuke ; Matsufuru, Hideo ; Yamada, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-1f22db946157ec16e95057b94f125a130d06060696ff9388ae8711af5da193103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Astrophysics</topic><topic>Closures</topic><topic>Collapse</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Convection</topic><topic>Core-collapse supernovae</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Energy flux</topic><topic>Equations of state</topic><topic>Euler-Lagrange equation</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Mathematical analysis</topic><topic>Neutrinos</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Supernova</topic><topic>Supernovae</topic><topic>Tensors</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwakami, Wakana</creatorcontrib><creatorcontrib>Okawa, Hirotada</creatorcontrib><creatorcontrib>Nagakura, Hiroki</creatorcontrib><creatorcontrib>Harada, Akira</creatorcontrib><creatorcontrib>Furusawa, Shun</creatorcontrib><creatorcontrib>Sumiyoshi, Kosuke</creatorcontrib><creatorcontrib>Matsufuru, Hideo</creatorcontrib><creatorcontrib>Yamada, Shoichi</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iwakami, Wakana</au><au>Okawa, Hirotada</au><au>Nagakura, Hiroki</au><au>Harada, Akira</au><au>Furusawa, Shun</au><au>Sumiyoshi, Kosuke</au><au>Matsufuru, Hideo</au><au>Yamada, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>903</volume><issue>2</issue><spage>82</spage><pages>82-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We report on the core-collapse supernova simulation we conducted for a 11.2M progenitor model in three-dimensional space up to 20 ms after bounce, using a radiation-hydrodynamics code with full Boltzmann neutrino transport. We solve the six-dimensional Boltzmann equations for three neutrino species and the three-dimensional compressible Euler equations with Furusawa and Togashi's nuclear equation of state. We focus on the prompt convection at ∼10 ms after bounce and investigate how neutrinos are transported in the convective matter. We apply a new analysis based on the eigenvalues and eigenvectors of the Eddington tensor and make a comparison between the Boltzmann transport results and the M1 closure approximation in the transition regime between the optically thick and thin limits. We visualize the eigenvalues and eigenvectors using an ellipsoid, in which each principal axis is parallel to one of the eigenvectors and has a length proportional to the corresponding eigenvalue. This approach enables us to understand the difference between the Eddington tensor derived directly from the Boltzmann simulation and the one given by the M1 prescription from a new perspective. We find that the longest principal axis of the ellipsoid is almost always nearly parallel to the energy flux in the M1 closure approximation, whereas in the Boltzmann simulation it becomes perpendicular in some transition regions, where the mean free path is ∼0.1 times the radius. In three spatial dimensions, the convective motions make it difficult to predict where this happens and to possibly improve the closure relation there.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abb8cf</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7205-6367</orcidid><orcidid>https://orcid.org/0000-0003-1409-0695</orcidid><orcidid>https://orcid.org/0000-0002-2166-5605</orcidid><orcidid>https://orcid.org/0000-0003-4959-069X</orcidid><orcidid>https://orcid.org/0000-0002-9224-9449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-11, Vol.903 (2), p.82
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2458985488
source IOP Publishing Free Content
subjects Approximation
Astrophysics
Closures
Collapse
Compressibility
Computational fluid dynamics
Convection
Core-collapse supernovae
Eigenvalues
Eigenvectors
Energy flux
Equations of state
Euler-Lagrange equation
Fluid flow
Hydrodynamics
Mathematical analysis
Neutrinos
Radiation
Simulation
Supernova
Supernovae
Tensors
Three dimensional models
title Simulations of the Early Postbounce Phase of Core-collapse Supernovae in Three-dimensional Space with Full Boltzmann Neutrino Transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20the%20Early%20Postbounce%20Phase%20of%20Core-collapse%20Supernovae%20in%20Three-dimensional%20Space%20with%20Full%20Boltzmann%20Neutrino%20Transport&rft.jtitle=The%20Astrophysical%20journal&rft.au=Iwakami,%20Wakana&rft.date=2020-11-01&rft.volume=903&rft.issue=2&rft.spage=82&rft.pages=82-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abb8cf&rft_dat=%3Cproquest_O3W%3E2458985488%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458985488&rft_id=info:pmid/&rfr_iscdi=true