Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks

Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-11, Vol.117 (19)
Hauptverfasser: Zhou, Chun-Sheng, Liu, Xiang-Rui, Feng, Yue, Shao, Xiji, Zeng, Meng, Wang, Kedong, Feng, Min, Liu, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 117
creator Zhou, Chun-Sheng
Liu, Xiang-Rui
Feng, Yue
Shao, Xiji
Zeng, Meng
Wang, Kedong
Feng, Min
Liu, Chang
description Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.
doi_str_mv 10.1063/5.0026372
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458814726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458814726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNR-7ye5Ril9QEEHPISazktpNapK1-O-NtOhB8DQMPLzMvAidUjKjRPDLZkYIE1yyPTShRErMKW330YQQwrHoGnqIjlJalrVhnE-Qehy1z-OATfC98zCAz9h5Oxqw1RqiC9aZKo2x1waqlHWGVDlf5U3A1hWdXPB6VQ2Q9QqH-Kp98X3UA2xCfEvH6KDXqwQnuzlFzzfXT_M7vHi4vZ9fLbDhTGZshZDQcWqhpW0tgbO-411N7ItgzLJyqpWc6FobIizvOiJbw0TdSGEFAc35FJ1tc9cxvI-QslqGMZbLkmJ107a0lqWWKTrfKhNDShF6tY5u0PFTUaK--1ON2vVX7MXWJuPK2-XNH_wR4i9Ua9v_h_8mfwGoC36D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458814726</pqid></control><display><type>article</type><title>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, Chun-Sheng ; Liu, Xiang-Rui ; Feng, Yue ; Shao, Xiji ; Zeng, Meng ; Wang, Kedong ; Feng, Min ; Liu, Chang</creator><creatorcontrib>Zhou, Chun-Sheng ; Liu, Xiang-Rui ; Feng, Yue ; Shao, Xiji ; Zeng, Meng ; Wang, Kedong ; Feng, Min ; Liu, Chang</creatorcontrib><description>Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0026372</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electronic structure ; Lattices ; Metal-organic frameworks ; Photoelectric emission ; Quantum confinement ; Substrates ; Topology</subject><ispartof>Applied physics letters, 2020-11, Vol.117 (19)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</citedby><cites>FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</cites><orcidid>0000-0002-7738-743X ; 0000-0003-3571-388X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0026372$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Zhou, Chun-Sheng</creatorcontrib><creatorcontrib>Liu, Xiang-Rui</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Shao, Xiji</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><title>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</title><title>Applied physics letters</title><description>Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.</description><subject>Applied physics</subject><subject>Electronic structure</subject><subject>Lattices</subject><subject>Metal-organic frameworks</subject><subject>Photoelectric emission</subject><subject>Quantum confinement</subject><subject>Substrates</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNR-7ye5Ril9QEEHPISazktpNapK1-O-NtOhB8DQMPLzMvAidUjKjRPDLZkYIE1yyPTShRErMKW330YQQwrHoGnqIjlJalrVhnE-Qehy1z-OATfC98zCAz9h5Oxqw1RqiC9aZKo2x1waqlHWGVDlf5U3A1hWdXPB6VQ2Q9QqH-Kp98X3UA2xCfEvH6KDXqwQnuzlFzzfXT_M7vHi4vZ9fLbDhTGZshZDQcWqhpW0tgbO-411N7ItgzLJyqpWc6FobIizvOiJbw0TdSGEFAc35FJ1tc9cxvI-QslqGMZbLkmJ107a0lqWWKTrfKhNDShF6tY5u0PFTUaK--1ON2vVX7MXWJuPK2-XNH_wR4i9Ua9v_h_8mfwGoC36D</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Zhou, Chun-Sheng</creator><creator>Liu, Xiang-Rui</creator><creator>Feng, Yue</creator><creator>Shao, Xiji</creator><creator>Zeng, Meng</creator><creator>Wang, Kedong</creator><creator>Feng, Min</creator><creator>Liu, Chang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3571-388X</orcidid></search><sort><creationdate>20201109</creationdate><title>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</title><author>Zhou, Chun-Sheng ; Liu, Xiang-Rui ; Feng, Yue ; Shao, Xiji ; Zeng, Meng ; Wang, Kedong ; Feng, Min ; Liu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Electronic structure</topic><topic>Lattices</topic><topic>Metal-organic frameworks</topic><topic>Photoelectric emission</topic><topic>Quantum confinement</topic><topic>Substrates</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chun-Sheng</creatorcontrib><creatorcontrib>Liu, Xiang-Rui</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Shao, Xiji</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chun-Sheng</au><au>Liu, Xiang-Rui</au><au>Feng, Yue</au><au>Shao, Xiji</au><au>Zeng, Meng</au><au>Wang, Kedong</au><au>Feng, Min</au><au>Liu, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</atitle><jtitle>Applied physics letters</jtitle><date>2020-11-09</date><risdate>2020</risdate><volume>117</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0026372</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3571-388X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2020-11, Vol.117 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2458814726
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Electronic structure
Lattices
Metal-organic frameworks
Photoelectric emission
Quantum confinement
Substrates
Topology
title Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum-confinement-induced%20periodic%20surface%20states%20in%20two-dimensional%20metal-organic%20frameworks&rft.jtitle=Applied%20physics%20letters&rft.au=Zhou,%20Chun-Sheng&rft.date=2020-11-09&rft.volume=117&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0026372&rft_dat=%3Cproquest_cross%3E2458814726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458814726&rft_id=info:pmid/&rfr_iscdi=true