Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks
Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission sp...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2020-11, Vol.117 (19) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 117 |
creator | Zhou, Chun-Sheng Liu, Xiang-Rui Feng, Yue Shao, Xiji Zeng, Meng Wang, Kedong Feng, Min Liu, Chang |
description | Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future. |
doi_str_mv | 10.1063/5.0026372 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458814726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458814726</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNR-7ye5Ril9QEEHPISazktpNapK1-O-NtOhB8DQMPLzMvAidUjKjRPDLZkYIE1yyPTShRErMKW330YQQwrHoGnqIjlJalrVhnE-Qehy1z-OATfC98zCAz9h5Oxqw1RqiC9aZKo2x1waqlHWGVDlf5U3A1hWdXPB6VQ2Q9QqH-Kp98X3UA2xCfEvH6KDXqwQnuzlFzzfXT_M7vHi4vZ9fLbDhTGZshZDQcWqhpW0tgbO-411N7ItgzLJyqpWc6FobIizvOiJbw0TdSGEFAc35FJ1tc9cxvI-QslqGMZbLkmJ107a0lqWWKTrfKhNDShF6tY5u0PFTUaK--1ON2vVX7MXWJuPK2-XNH_wR4i9Ua9v_h_8mfwGoC36D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458814726</pqid></control><display><type>article</type><title>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhou, Chun-Sheng ; Liu, Xiang-Rui ; Feng, Yue ; Shao, Xiji ; Zeng, Meng ; Wang, Kedong ; Feng, Min ; Liu, Chang</creator><creatorcontrib>Zhou, Chun-Sheng ; Liu, Xiang-Rui ; Feng, Yue ; Shao, Xiji ; Zeng, Meng ; Wang, Kedong ; Feng, Min ; Liu, Chang</creatorcontrib><description>Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0026372</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electronic structure ; Lattices ; Metal-organic frameworks ; Photoelectric emission ; Quantum confinement ; Substrates ; Topology</subject><ispartof>Applied physics letters, 2020-11, Vol.117 (19)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</citedby><cites>FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</cites><orcidid>0000-0002-7738-743X ; 0000-0003-3571-388X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0026372$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Zhou, Chun-Sheng</creatorcontrib><creatorcontrib>Liu, Xiang-Rui</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Shao, Xiji</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><title>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</title><title>Applied physics letters</title><description>Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.</description><subject>Applied physics</subject><subject>Electronic structure</subject><subject>Lattices</subject><subject>Metal-organic frameworks</subject><subject>Photoelectric emission</subject><subject>Quantum confinement</subject><subject>Substrates</subject><subject>Topology</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4EkhNR-7ye5Ril9QEEHPISazktpNapK1-O-NtOhB8DQMPLzMvAidUjKjRPDLZkYIE1yyPTShRErMKW330YQQwrHoGnqIjlJalrVhnE-Qehy1z-OATfC98zCAz9h5Oxqw1RqiC9aZKo2x1waqlHWGVDlf5U3A1hWdXPB6VQ2Q9QqH-Kp98X3UA2xCfEvH6KDXqwQnuzlFzzfXT_M7vHi4vZ9fLbDhTGZshZDQcWqhpW0tgbO-411N7ItgzLJyqpWc6FobIizvOiJbw0TdSGEFAc35FJ1tc9cxvI-QslqGMZbLkmJ107a0lqWWKTrfKhNDShF6tY5u0PFTUaK--1ON2vVX7MXWJuPK2-XNH_wR4i9Ua9v_h_8mfwGoC36D</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Zhou, Chun-Sheng</creator><creator>Liu, Xiang-Rui</creator><creator>Feng, Yue</creator><creator>Shao, Xiji</creator><creator>Zeng, Meng</creator><creator>Wang, Kedong</creator><creator>Feng, Min</creator><creator>Liu, Chang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3571-388X</orcidid></search><sort><creationdate>20201109</creationdate><title>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</title><author>Zhou, Chun-Sheng ; Liu, Xiang-Rui ; Feng, Yue ; Shao, Xiji ; Zeng, Meng ; Wang, Kedong ; Feng, Min ; Liu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d667e931de81847e32f93940db622d2233d730a4ac06d399078c264576d60ea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Electronic structure</topic><topic>Lattices</topic><topic>Metal-organic frameworks</topic><topic>Photoelectric emission</topic><topic>Quantum confinement</topic><topic>Substrates</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chun-Sheng</creatorcontrib><creatorcontrib>Liu, Xiang-Rui</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Shao, Xiji</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Kedong</creatorcontrib><creatorcontrib>Feng, Min</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chun-Sheng</au><au>Liu, Xiang-Rui</au><au>Feng, Yue</au><au>Shao, Xiji</au><au>Zeng, Meng</au><au>Wang, Kedong</au><au>Feng, Min</au><au>Liu, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks</atitle><jtitle>Applied physics letters</jtitle><date>2020-11-09</date><risdate>2020</risdate><volume>117</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Recently, a series of single-layer metal–organic frameworks (MOFs) was theoretically predicted to be two-dimensional organic topological materials. However, the experimental evidence of their nontrivial topological states has not been found. Here, combining the use of angle-resolved photoemission spectroscopy and scanning tunneling microscopy, we report the electronic structure studies on a single-layer Cu-coordinated 2,4,6-tri(4-pyridyl)-1,3,5-triazine (Cu-T4PT) MOF supported by a Cu(111) substrate and identify periodic surface states with the period of the Cu-T4PT reciprocal lattice. These periodic surface states, which have identical features to the Cu(111) Shockley surface states, can be attributed to the quantum confinement of the surface states of the underlying Cu(111) substrate by the network lattices of the Cu-T4PT MOF. Our work indicates that the surface states of the metal substrate can be tailored in a controlled manner by the network structures of MOFs with different periodic lattices. The lack of intrinsic bands and the possible topological properties of the single-layer Cu-T4PT MOF may be attributed to the strong electronic coupling between the Cu-T4PT MOF and the Cu(111) substrates. In order to exploit organic topological materials predicted in MOFs, it is necessary to grow them on weak van der Waals interaction substrates in the future.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0026372</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3571-388X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2020-11, Vol.117 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2458814726 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Electronic structure Lattices Metal-organic frameworks Photoelectric emission Quantum confinement Substrates Topology |
title | Quantum-confinement-induced periodic surface states in two-dimensional metal-organic frameworks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum-confinement-induced%20periodic%20surface%20states%20in%20two-dimensional%20metal-organic%20frameworks&rft.jtitle=Applied%20physics%20letters&rft.au=Zhou,%20Chun-Sheng&rft.date=2020-11-09&rft.volume=117&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0026372&rft_dat=%3Cproquest_cross%3E2458814726%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458814726&rft_id=info:pmid/&rfr_iscdi=true |