Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence
An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assess...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2020, Vol.2020 (2020), p.1-13 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2020 |
creator | Kataria, Aman Lee, Kyungroul Leekha, Rohan Singh Arora, Vinay |
description | An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com. |
doi_str_mv | 10.1155/2020/8885269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458477904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458477904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpehzV6WDgxcFuJc2PLqNrZpIh-tfb0oFH3yWP8HnvwReAW4yeMKZ0lqIUzTjnNGXFGZhgntOkQHRz3vc0zxKE880luAphhxBDhOYT0CyEtK2NItqugeugPZwf49Z5-9N_uQ4a7_Zwua9FKzqpFXwWUcCVawJ0BpZeKxthKbwK_fCwYu6jNVZa0cJlF3Xb2kb3g9fgwog26JvTOwXrxctH-Zas3l-X5XyVSMJQTFitSCEJzaRRIqO55CJjCJFUiaE4IqzGtTCKGYIpSwuicU1RqjRhRGacTMH9uPfg3edRh1jt3NF3_ckqzSjP8rxAWa8eRyW9C8FrUx283Qv_XWFUDVFWQ5TVKcqeP4x8azslvux_-m7UujfaiD-Ni5RyTH4Bhmx9tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458477904</pqid></control><display><type>article</type><title>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kataria, Aman ; Lee, Kyungroul ; Leekha, Rohan Singh ; Arora, Vinay</creator><contributor>Li, Zengpeng</contributor><creatorcontrib>Kataria, Aman ; Lee, Kyungroul ; Leekha, Rohan Singh ; Arora, Vinay ; Li, Zengpeng</creatorcontrib><description>An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2020/8885269</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Credit card fraud ; Customization ; Datasets ; Decision trees ; Experimentation ; Hypotheses ; Internet of Things ; Machine learning ; Multilayer perceptrons ; Performance prediction ; Risk assessment ; Support vector machines</subject><ispartof>Mobile information systems, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Vinay Arora et al.</rights><rights>Copyright © 2020 Vinay Arora et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</citedby><cites>FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</cites><orcidid>0000-0003-1477-7569 ; 0000-0001-5634-3465 ; 0000-0001-6791-6310 ; 0000-0001-6081-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Li, Zengpeng</contributor><creatorcontrib>Kataria, Aman</creatorcontrib><creatorcontrib>Lee, Kyungroul</creatorcontrib><creatorcontrib>Leekha, Rohan Singh</creatorcontrib><creatorcontrib>Arora, Vinay</creatorcontrib><title>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</title><title>Mobile information systems</title><description>An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Credit card fraud</subject><subject>Customization</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Experimentation</subject><subject>Hypotheses</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Performance prediction</subject><subject>Risk assessment</subject><subject>Support vector machines</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpehzV6WDgxcFuJc2PLqNrZpIh-tfb0oFH3yWP8HnvwReAW4yeMKZ0lqIUzTjnNGXFGZhgntOkQHRz3vc0zxKE880luAphhxBDhOYT0CyEtK2NItqugeugPZwf49Z5-9N_uQ4a7_Zwua9FKzqpFXwWUcCVawJ0BpZeKxthKbwK_fCwYu6jNVZa0cJlF3Xb2kb3g9fgwog26JvTOwXrxctH-Zas3l-X5XyVSMJQTFitSCEJzaRRIqO55CJjCJFUiaE4IqzGtTCKGYIpSwuicU1RqjRhRGacTMH9uPfg3edRh1jt3NF3_ckqzSjP8rxAWa8eRyW9C8FrUx283Qv_XWFUDVFWQ5TVKcqeP4x8azslvux_-m7UujfaiD-Ni5RyTH4Bhmx9tQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kataria, Aman</creator><creator>Lee, Kyungroul</creator><creator>Leekha, Rohan Singh</creator><creator>Arora, Vinay</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1477-7569</orcidid><orcidid>https://orcid.org/0000-0001-5634-3465</orcidid><orcidid>https://orcid.org/0000-0001-6791-6310</orcidid><orcidid>https://orcid.org/0000-0001-6081-7555</orcidid></search><sort><creationdate>2020</creationdate><title>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</title><author>Kataria, Aman ; Lee, Kyungroul ; Leekha, Rohan Singh ; Arora, Vinay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Credit card fraud</topic><topic>Customization</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Experimentation</topic><topic>Hypotheses</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Performance prediction</topic><topic>Risk assessment</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kataria, Aman</creatorcontrib><creatorcontrib>Lee, Kyungroul</creatorcontrib><creatorcontrib>Leekha, Rohan Singh</creatorcontrib><creatorcontrib>Arora, Vinay</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kataria, Aman</au><au>Lee, Kyungroul</au><au>Leekha, Rohan Singh</au><au>Arora, Vinay</au><au>Li, Zengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</atitle><jtitle>Mobile information systems</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8885269</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1477-7569</orcidid><orcidid>https://orcid.org/0000-0001-5634-3465</orcidid><orcidid>https://orcid.org/0000-0001-6791-6310</orcidid><orcidid>https://orcid.org/0000-0001-6081-7555</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2020, Vol.2020 (2020), p.1-13 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2458477904 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Credit card fraud Customization Datasets Decision trees Experimentation Hypotheses Internet of Things Machine learning Multilayer perceptrons Performance prediction Risk assessment Support vector machines |
title | Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facilitating%20User%20Authorization%20from%20Imbalanced%20Data%20Logs%20of%20Credit%20Cards%20Using%20Artificial%20Intelligence&rft.jtitle=Mobile%20information%20systems&rft.au=Kataria,%20Aman&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2020/8885269&rft_dat=%3Cproquest_cross%3E2458477904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458477904&rft_id=info:pmid/&rfr_iscdi=true |