Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence

An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assess...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Kataria, Aman, Lee, Kyungroul, Leekha, Rohan Singh, Arora, Vinay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2020
container_start_page 1
container_title Mobile information systems
container_volume 2020
creator Kataria, Aman
Lee, Kyungroul
Leekha, Rohan Singh
Arora, Vinay
description An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.
doi_str_mv 10.1155/2020/8885269
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458477904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458477904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpehzV6WDgxcFuJc2PLqNrZpIh-tfb0oFH3yWP8HnvwReAW4yeMKZ0lqIUzTjnNGXFGZhgntOkQHRz3vc0zxKE880luAphhxBDhOYT0CyEtK2NItqugeugPZwf49Z5-9N_uQ4a7_Zwua9FKzqpFXwWUcCVawJ0BpZeKxthKbwK_fCwYu6jNVZa0cJlF3Xb2kb3g9fgwog26JvTOwXrxctH-Zas3l-X5XyVSMJQTFitSCEJzaRRIqO55CJjCJFUiaE4IqzGtTCKGYIpSwuicU1RqjRhRGacTMH9uPfg3edRh1jt3NF3_ckqzSjP8rxAWa8eRyW9C8FrUx283Qv_XWFUDVFWQ5TVKcqeP4x8azslvux_-m7UujfaiD-Ni5RyTH4Bhmx9tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458477904</pqid></control><display><type>article</type><title>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kataria, Aman ; Lee, Kyungroul ; Leekha, Rohan Singh ; Arora, Vinay</creator><contributor>Li, Zengpeng</contributor><creatorcontrib>Kataria, Aman ; Lee, Kyungroul ; Leekha, Rohan Singh ; Arora, Vinay ; Li, Zengpeng</creatorcontrib><description>An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2020/8885269</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial intelligence ; Credit card fraud ; Customization ; Datasets ; Decision trees ; Experimentation ; Hypotheses ; Internet of Things ; Machine learning ; Multilayer perceptrons ; Performance prediction ; Risk assessment ; Support vector machines</subject><ispartof>Mobile information systems, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Vinay Arora et al.</rights><rights>Copyright © 2020 Vinay Arora et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</citedby><cites>FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</cites><orcidid>0000-0003-1477-7569 ; 0000-0001-5634-3465 ; 0000-0001-6791-6310 ; 0000-0001-6081-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Li, Zengpeng</contributor><creatorcontrib>Kataria, Aman</creatorcontrib><creatorcontrib>Lee, Kyungroul</creatorcontrib><creatorcontrib>Leekha, Rohan Singh</creatorcontrib><creatorcontrib>Arora, Vinay</creatorcontrib><title>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</title><title>Mobile information systems</title><description>An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Credit card fraud</subject><subject>Customization</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Experimentation</subject><subject>Hypotheses</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Performance prediction</subject><subject>Risk assessment</subject><subject>Support vector machines</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqF0M9LwzAUB_AgCs7pzbMEPGpd0jRpehzV6WDgxcFuJc2PLqNrZpIh-tfb0oFH3yWP8HnvwReAW4yeMKZ0lqIUzTjnNGXFGZhgntOkQHRz3vc0zxKE880luAphhxBDhOYT0CyEtK2NItqugeugPZwf49Z5-9N_uQ4a7_Zwua9FKzqpFXwWUcCVawJ0BpZeKxthKbwK_fCwYu6jNVZa0cJlF3Xb2kb3g9fgwog26JvTOwXrxctH-Zas3l-X5XyVSMJQTFitSCEJzaRRIqO55CJjCJFUiaE4IqzGtTCKGYIpSwuicU1RqjRhRGacTMH9uPfg3edRh1jt3NF3_ckqzSjP8rxAWa8eRyW9C8FrUx283Qv_XWFUDVFWQ5TVKcqeP4x8azslvux_-m7UujfaiD-Ni5RyTH4Bhmx9tQ</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kataria, Aman</creator><creator>Lee, Kyungroul</creator><creator>Leekha, Rohan Singh</creator><creator>Arora, Vinay</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1477-7569</orcidid><orcidid>https://orcid.org/0000-0001-5634-3465</orcidid><orcidid>https://orcid.org/0000-0001-6791-6310</orcidid><orcidid>https://orcid.org/0000-0001-6081-7555</orcidid></search><sort><creationdate>2020</creationdate><title>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</title><author>Kataria, Aman ; Lee, Kyungroul ; Leekha, Rohan Singh ; Arora, Vinay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6bd39c354cfda457c8a460032daaaaa8036b1bafd6f3156293e1b502de363c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Credit card fraud</topic><topic>Customization</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Experimentation</topic><topic>Hypotheses</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Performance prediction</topic><topic>Risk assessment</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kataria, Aman</creatorcontrib><creatorcontrib>Lee, Kyungroul</creatorcontrib><creatorcontrib>Leekha, Rohan Singh</creatorcontrib><creatorcontrib>Arora, Vinay</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kataria, Aman</au><au>Lee, Kyungroul</au><au>Leekha, Rohan Singh</au><au>Arora, Vinay</au><au>Li, Zengpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence</atitle><jtitle>Mobile information systems</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate financial threat assessment for commercial firms and credit agencies. The scope of this study is to build a predictive framework to help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. The evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/8885269</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1477-7569</orcidid><orcidid>https://orcid.org/0000-0001-5634-3465</orcidid><orcidid>https://orcid.org/0000-0001-6791-6310</orcidid><orcidid>https://orcid.org/0000-0001-6081-7555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2020, Vol.2020 (2020), p.1-13
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2458477904
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Credit card fraud
Customization
Datasets
Decision trees
Experimentation
Hypotheses
Internet of Things
Machine learning
Multilayer perceptrons
Performance prediction
Risk assessment
Support vector machines
title Facilitating User Authorization from Imbalanced Data Logs of Credit Cards Using Artificial Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Facilitating%20User%20Authorization%20from%20Imbalanced%20Data%20Logs%20of%20Credit%20Cards%20Using%20Artificial%20Intelligence&rft.jtitle=Mobile%20information%20systems&rft.au=Kataria,%20Aman&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2020/8885269&rft_dat=%3Cproquest_cross%3E2458477904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458477904&rft_id=info:pmid/&rfr_iscdi=true