A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations
In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for t...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Su, Zhenhua Li, Min |
description | In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective. |
doi_str_mv | 10.1155/2020/6854501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458475964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458475964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</originalsourceid><addsrcrecordid>eNqF0M1Kw0AUBeAgCtbqzrUMuNTY-U0yy1JbFaIuquBCCNPkTpuSZtqZpNKd7-Ab-iROieDSzZ0D83EvnCA4J_iGECEGFFM8iBLBBSYHQY-IiIWC8PjQZ0x5SCh7Ow5OnFtiTIkgSS94H6JbsOVWNeUWwokFQGnZfn9-TRtjYYceoVmYAmlj0dRU27Keo1TZOYTTXFWAnkxdlTUo_7tzDawcMhqNN61fZ2p3GhxpVTk4-337wetk_DK6D9Pnu4fRMA1zFuEmzCmWXKoZMOBF7gPLQarID8FjEhc5k5TIGZGJKqTS2kctIE50JBTNVcL6wWW3d23NpgXXZEvT2tqfzCgXCY-FjLhX153KrXHOgs7Wtlwpu8sIzvb9Zfv-st_-PL_q-KKsC_VR_qcvOg3egFZ_msiYRZL9ACFgesA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458475964</pqid></control><display><type>article</type><title>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Su, Zhenhua ; Li, Min</creator><contributor>Khalique, Chaudry M. ; Chaudry M Khalique</contributor><creatorcontrib>Su, Zhenhua ; Li, Min ; Khalique, Chaudry M. ; Chaudry M Khalique</creatorcontrib><description>In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/6854501</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Conjugate gradient method ; Engineering ; Mathematical analysis ; Methods ; Nonlinear equations ; Nonlinear systems ; Numerical analysis ; Optimization</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Zhenhua Su and Min Li.</rights><rights>Copyright © 2020 Zhenhua Su and Min Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</citedby><cites>FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</cites><orcidid>0000-0002-6957-610X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Khalique, Chaudry M.</contributor><contributor>Chaudry M Khalique</contributor><creatorcontrib>Su, Zhenhua</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><title>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</title><title>Mathematical problems in engineering</title><description>In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.</description><subject>Algorithms</subject><subject>Conjugate gradient method</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Numerical analysis</subject><subject>Optimization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1Kw0AUBeAgCtbqzrUMuNTY-U0yy1JbFaIuquBCCNPkTpuSZtqZpNKd7-Ab-iROieDSzZ0D83EvnCA4J_iGECEGFFM8iBLBBSYHQY-IiIWC8PjQZ0x5SCh7Ow5OnFtiTIkgSS94H6JbsOVWNeUWwokFQGnZfn9-TRtjYYceoVmYAmlj0dRU27Keo1TZOYTTXFWAnkxdlTUo_7tzDawcMhqNN61fZ2p3GhxpVTk4-337wetk_DK6D9Pnu4fRMA1zFuEmzCmWXKoZMOBF7gPLQarID8FjEhc5k5TIGZGJKqTS2kctIE50JBTNVcL6wWW3d23NpgXXZEvT2tqfzCgXCY-FjLhX153KrXHOgs7Wtlwpu8sIzvb9Zfv-st_-PL_q-KKsC_VR_qcvOg3egFZ_msiYRZL9ACFgesA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Su, Zhenhua</creator><creator>Li, Min</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6957-610X</orcidid></search><sort><creationdate>2020</creationdate><title>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</title><author>Su, Zhenhua ; Li, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Conjugate gradient method</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Numerical analysis</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Zhenhua</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Zhenhua</au><au>Li, Min</au><au>Khalique, Chaudry M.</au><au>Chaudry M Khalique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6854501</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6957-610X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2458475964 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Conjugate gradient method Engineering Mathematical analysis Methods Nonlinear equations Nonlinear systems Numerical analysis Optimization |
title | A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Derivative-Free%20Liu%E2%80%93Storey%20Method%20for%20Solving%20Large-Scale%20Nonlinear%20Systems%20of%20Equations&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Su,%20Zhenhua&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/6854501&rft_dat=%3Cproquest_cross%3E2458475964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458475964&rft_id=info:pmid/&rfr_iscdi=true |