A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations

In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Su, Zhenhua, Li, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Su, Zhenhua
Li, Min
description In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.
doi_str_mv 10.1155/2020/6854501
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458475964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458475964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</originalsourceid><addsrcrecordid>eNqF0M1Kw0AUBeAgCtbqzrUMuNTY-U0yy1JbFaIuquBCCNPkTpuSZtqZpNKd7-Ab-iROieDSzZ0D83EvnCA4J_iGECEGFFM8iBLBBSYHQY-IiIWC8PjQZ0x5SCh7Ow5OnFtiTIkgSS94H6JbsOVWNeUWwokFQGnZfn9-TRtjYYceoVmYAmlj0dRU27Keo1TZOYTTXFWAnkxdlTUo_7tzDawcMhqNN61fZ2p3GhxpVTk4-337wetk_DK6D9Pnu4fRMA1zFuEmzCmWXKoZMOBF7gPLQarID8FjEhc5k5TIGZGJKqTS2kctIE50JBTNVcL6wWW3d23NpgXXZEvT2tqfzCgXCY-FjLhX153KrXHOgs7Wtlwpu8sIzvb9Zfv-st_-PL_q-KKsC_VR_qcvOg3egFZ_msiYRZL9ACFgesA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458475964</pqid></control><display><type>article</type><title>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Su, Zhenhua ; Li, Min</creator><contributor>Khalique, Chaudry M. ; Chaudry M Khalique</contributor><creatorcontrib>Su, Zhenhua ; Li, Min ; Khalique, Chaudry M. ; Chaudry M Khalique</creatorcontrib><description>In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/6854501</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Conjugate gradient method ; Engineering ; Mathematical analysis ; Methods ; Nonlinear equations ; Nonlinear systems ; Numerical analysis ; Optimization</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Zhenhua Su and Min Li.</rights><rights>Copyright © 2020 Zhenhua Su and Min Li. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</citedby><cites>FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</cites><orcidid>0000-0002-6957-610X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><contributor>Khalique, Chaudry M.</contributor><contributor>Chaudry M Khalique</contributor><creatorcontrib>Su, Zhenhua</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><title>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</title><title>Mathematical problems in engineering</title><description>In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.</description><subject>Algorithms</subject><subject>Conjugate gradient method</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Nonlinear equations</subject><subject>Nonlinear systems</subject><subject>Numerical analysis</subject><subject>Optimization</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0M1Kw0AUBeAgCtbqzrUMuNTY-U0yy1JbFaIuquBCCNPkTpuSZtqZpNKd7-Ab-iROieDSzZ0D83EvnCA4J_iGECEGFFM8iBLBBSYHQY-IiIWC8PjQZ0x5SCh7Ow5OnFtiTIkgSS94H6JbsOVWNeUWwokFQGnZfn9-TRtjYYceoVmYAmlj0dRU27Keo1TZOYTTXFWAnkxdlTUo_7tzDawcMhqNN61fZ2p3GhxpVTk4-337wetk_DK6D9Pnu4fRMA1zFuEmzCmWXKoZMOBF7gPLQarID8FjEhc5k5TIGZGJKqTS2kctIE50JBTNVcL6wWW3d23NpgXXZEvT2tqfzCgXCY-FjLhX153KrXHOgs7Wtlwpu8sIzvb9Zfv-st_-PL_q-KKsC_VR_qcvOg3egFZ_msiYRZL9ACFgesA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Su, Zhenhua</creator><creator>Li, Min</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6957-610X</orcidid></search><sort><creationdate>2020</creationdate><title>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</title><author>Su, Zhenhua ; Li, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-c20949abe3e4dc9ab3ce9a6ce954717dc39219b198ad9aff9b1f5e78f65a2ca83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Conjugate gradient method</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Nonlinear equations</topic><topic>Nonlinear systems</topic><topic>Numerical analysis</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Zhenhua</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Zhenhua</au><au>Li, Min</au><au>Khalique, Chaudry M.</au><au>Chaudry M Khalique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In this paper, a descent Liu–Storey conjugate gradient method is extended to solve large-scale nonlinear systems of equations. Based on certain assumptions, the global convergence property is obtained with a nonmonotone line search. The proposed method is suitable to solve large-scale problems for the low-storage requirement. Numerical experiment results show that the new method is practically effective.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/6854501</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6957-610X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2458475964
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Conjugate gradient method
Engineering
Mathematical analysis
Methods
Nonlinear equations
Nonlinear systems
Numerical analysis
Optimization
title A Derivative-Free Liu–Storey Method for Solving Large-Scale Nonlinear Systems of Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Derivative-Free%20Liu%E2%80%93Storey%20Method%20for%20Solving%20Large-Scale%20Nonlinear%20Systems%20of%20Equations&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Su,%20Zhenhua&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/6854501&rft_dat=%3Cproquest_cross%3E2458475964%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458475964&rft_id=info:pmid/&rfr_iscdi=true