Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control
Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Zhao, Tongjuan Zhang, Jianhua Wang, Jiuhe |
description | Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal. |
doi_str_mv | 10.1155/2020/3697476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458475760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458475760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</originalsourceid><addsrcrecordid>eNqF0L1PAjEABfCL0UREN2dziaOe9PPajoSImiAOQuJ2qUeLhaPFtifhv7cXSByd3ht-_cjLsmsIHiCkdIAAAgNcCkZYeZL1IC1xQSFhp6kDRAqI8Md5dhHCCgAEKeS9rB47v5HROJvPvKzXxi5z7Xw-dVZqbazqWpNS-vy1baKRS2Vj_r4PUW1CPg_dgalqvWxSxJ3z63y4kNtoflQ-cjZ611xmZ1o2QV0ds5_Nx4-z0XMxeXt6GQ0nRY1LEAtCkaR8QTgXAoLUAGIUCIxBzQlHNWBCYMk_scJI61JxQiGAGuoSaqkow_3s9nDv1rvvVoVYrVzrbXqyQoRywigrQVL3B1V7F4JXutp6s5F-X0FQdTNW3YzVccbE7w78y9iF3Jn_9M1Bq2SUln8aivQFgX8BSzN7Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458475760</pqid></control><display><type>article</type><title>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zhao, Tongjuan ; Zhang, Jianhua ; Wang, Jiuhe</creator><contributor>Boubaker, Olfa ; Olfa Boubaker</contributor><creatorcontrib>Zhao, Tongjuan ; Zhang, Jianhua ; Wang, Jiuhe ; Boubaker, Olfa ; Olfa Boubaker</creatorcontrib><description>Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3697476</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Artificial intelligence ; Inequality ; Mathematical models ; Multiagent systems ; Neural networks ; Nonlinear systems ; Radial basis function ; Topography ; Tracking control</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-8</ispartof><rights>Copyright © 2020 Tongjuan Zhao et al.</rights><rights>Copyright © 2020 Tongjuan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</citedby><cites>FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</cites><orcidid>0000-0001-5594-7371 ; 0000-0002-0974-639X ; 0000-0002-6561-5917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Boubaker, Olfa</contributor><contributor>Olfa Boubaker</contributor><creatorcontrib>Zhao, Tongjuan</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Jiuhe</creatorcontrib><title>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</title><title>Mathematical problems in engineering</title><description>Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.</description><subject>Adaptive control</subject><subject>Artificial intelligence</subject><subject>Inequality</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Radial basis function</subject><subject>Topography</subject><subject>Tracking control</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0L1PAjEABfCL0UREN2dziaOe9PPajoSImiAOQuJ2qUeLhaPFtifhv7cXSByd3ht-_cjLsmsIHiCkdIAAAgNcCkZYeZL1IC1xQSFhp6kDRAqI8Md5dhHCCgAEKeS9rB47v5HROJvPvKzXxi5z7Xw-dVZqbazqWpNS-vy1baKRS2Vj_r4PUW1CPg_dgalqvWxSxJ3z63y4kNtoflQ-cjZ611xmZ1o2QV0ds5_Nx4-z0XMxeXt6GQ0nRY1LEAtCkaR8QTgXAoLUAGIUCIxBzQlHNWBCYMk_scJI61JxQiGAGuoSaqkow_3s9nDv1rvvVoVYrVzrbXqyQoRywigrQVL3B1V7F4JXutp6s5F-X0FQdTNW3YzVccbE7w78y9iF3Jn_9M1Bq2SUln8aivQFgX8BSzN7Dw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhao, Tongjuan</creator><creator>Zhang, Jianhua</creator><creator>Wang, Jiuhe</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5594-7371</orcidid><orcidid>https://orcid.org/0000-0002-0974-639X</orcidid><orcidid>https://orcid.org/0000-0002-6561-5917</orcidid></search><sort><creationdate>2020</creationdate><title>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</title><author>Zhao, Tongjuan ; Zhang, Jianhua ; Wang, Jiuhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Artificial intelligence</topic><topic>Inequality</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Radial basis function</topic><topic>Topography</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tongjuan</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Jiuhe</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tongjuan</au><au>Zhang, Jianhua</au><au>Wang, Jiuhe</au><au>Boubaker, Olfa</au><au>Olfa Boubaker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3697476</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5594-7371</orcidid><orcidid>https://orcid.org/0000-0002-0974-639X</orcidid><orcidid>https://orcid.org/0000-0002-6561-5917</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-8 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2458475760 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Adaptive control Artificial intelligence Inequality Mathematical models Multiagent systems Neural networks Nonlinear systems Radial basis function Topography Tracking control |
title | Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20Tracking%20for%20Nonaffine%20Nonlinear%20Multiagent%20Systems%20Using%20Neural%20Network%20Adaptive%20Control&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhao,%20Tongjuan&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3697476&rft_dat=%3Cproquest_cross%3E2458475760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458475760&rft_id=info:pmid/&rfr_iscdi=true |