Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control

Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-8
Hauptverfasser: Zhao, Tongjuan, Zhang, Jianhua, Wang, Jiuhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Zhao, Tongjuan
Zhang, Jianhua
Wang, Jiuhe
description Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.
doi_str_mv 10.1155/2020/3697476
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2458475760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458475760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</originalsourceid><addsrcrecordid>eNqF0L1PAjEABfCL0UREN2dziaOe9PPajoSImiAOQuJ2qUeLhaPFtifhv7cXSByd3ht-_cjLsmsIHiCkdIAAAgNcCkZYeZL1IC1xQSFhp6kDRAqI8Md5dhHCCgAEKeS9rB47v5HROJvPvKzXxi5z7Xw-dVZqbazqWpNS-vy1baKRS2Vj_r4PUW1CPg_dgalqvWxSxJ3z63y4kNtoflQ-cjZ611xmZ1o2QV0ds5_Nx4-z0XMxeXt6GQ0nRY1LEAtCkaR8QTgXAoLUAGIUCIxBzQlHNWBCYMk_scJI61JxQiGAGuoSaqkow_3s9nDv1rvvVoVYrVzrbXqyQoRywigrQVL3B1V7F4JXutp6s5F-X0FQdTNW3YzVccbE7w78y9iF3Jn_9M1Bq2SUln8aivQFgX8BSzN7Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458475760</pqid></control><display><type>article</type><title>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zhao, Tongjuan ; Zhang, Jianhua ; Wang, Jiuhe</creator><contributor>Boubaker, Olfa ; Olfa Boubaker</contributor><creatorcontrib>Zhao, Tongjuan ; Zhang, Jianhua ; Wang, Jiuhe ; Boubaker, Olfa ; Olfa Boubaker</creatorcontrib><description>Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/3697476</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Artificial intelligence ; Inequality ; Mathematical models ; Multiagent systems ; Neural networks ; Nonlinear systems ; Radial basis function ; Topography ; Tracking control</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-8</ispartof><rights>Copyright © 2020 Tongjuan Zhao et al.</rights><rights>Copyright © 2020 Tongjuan Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</citedby><cites>FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</cites><orcidid>0000-0001-5594-7371 ; 0000-0002-0974-639X ; 0000-0002-6561-5917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Boubaker, Olfa</contributor><contributor>Olfa Boubaker</contributor><creatorcontrib>Zhao, Tongjuan</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Jiuhe</creatorcontrib><title>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</title><title>Mathematical problems in engineering</title><description>Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.</description><subject>Adaptive control</subject><subject>Artificial intelligence</subject><subject>Inequality</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Radial basis function</subject><subject>Topography</subject><subject>Tracking control</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0L1PAjEABfCL0UREN2dziaOe9PPajoSImiAOQuJ2qUeLhaPFtifhv7cXSByd3ht-_cjLsmsIHiCkdIAAAgNcCkZYeZL1IC1xQSFhp6kDRAqI8Md5dhHCCgAEKeS9rB47v5HROJvPvKzXxi5z7Xw-dVZqbazqWpNS-vy1baKRS2Vj_r4PUW1CPg_dgalqvWxSxJ3z63y4kNtoflQ-cjZ611xmZ1o2QV0ds5_Nx4-z0XMxeXt6GQ0nRY1LEAtCkaR8QTgXAoLUAGIUCIxBzQlHNWBCYMk_scJI61JxQiGAGuoSaqkow_3s9nDv1rvvVoVYrVzrbXqyQoRywigrQVL3B1V7F4JXutp6s5F-X0FQdTNW3YzVccbE7w78y9iF3Jn_9M1Bq2SUln8aivQFgX8BSzN7Dw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhao, Tongjuan</creator><creator>Zhang, Jianhua</creator><creator>Wang, Jiuhe</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5594-7371</orcidid><orcidid>https://orcid.org/0000-0002-0974-639X</orcidid><orcidid>https://orcid.org/0000-0002-6561-5917</orcidid></search><sort><creationdate>2020</creationdate><title>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</title><author>Zhao, Tongjuan ; Zhang, Jianhua ; Wang, Jiuhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-452a58d488991058d027509330c8482c07993a8b3e32ff6e845101f1f61fae573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Artificial intelligence</topic><topic>Inequality</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Radial basis function</topic><topic>Topography</topic><topic>Tracking control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tongjuan</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Wang, Jiuhe</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Tongjuan</au><au>Zhang, Jianhua</au><au>Wang, Jiuhe</au><au>Boubaker, Olfa</au><au>Olfa Boubaker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Adaptive tracking control for distributed multiagent systems in nonaffine form is considered in this paper. Each follower agent is modeled by a nonlinear pure-feedback system with nonaffine form, and a nonlinear system is unknown functions rather than constants. Radial basis function neural networks (NNs) are employed to approximate the unknown nonlinear functions, and weights of NNs are updated by adaptive law in finite-time form. Then, the adaptive finite NN approach and backstepping technology are combined to construct the consensus tracking control protocol. Numerical simulation is presented to demonstrate the efficacy of suggested control proposal.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/3697476</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5594-7371</orcidid><orcidid>https://orcid.org/0000-0002-0974-639X</orcidid><orcidid>https://orcid.org/0000-0002-6561-5917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-8
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2458475760
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Adaptive control
Artificial intelligence
Inequality
Mathematical models
Multiagent systems
Neural networks
Nonlinear systems
Radial basis function
Topography
Tracking control
title Formation Tracking for Nonaffine Nonlinear Multiagent Systems Using Neural Network Adaptive Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formation%20Tracking%20for%20Nonaffine%20Nonlinear%20Multiagent%20Systems%20Using%20Neural%20Network%20Adaptive%20Control&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhao,%20Tongjuan&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/3697476&rft_dat=%3Cproquest_cross%3E2458475760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458475760&rft_id=info:pmid/&rfr_iscdi=true