Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests

Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: She, Zhaowei, Wang, Zilong, Ayer, Turgay, Toumi, Asmae, Chhatwal, Jagpreet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator She, Zhaowei
Wang, Zilong
Ayer, Turgay
Toumi, Asmae
Chhatwal, Jagpreet
description Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2458223017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458223017</sourcerecordid><originalsourceid>FETCH-proquest_journals_24582230173</originalsourceid><addsrcrecordid>eNqNi98KgjAcRkcQJOU7DLoW5qZp16YVBEFUF93IwF81mZtts39Pn0EP0NUH55xvgDzKWBikEaUj5FtbE0LoLKFxzDx0yq0TDXdCXXCmO-VewQbuIHG2Pa4XQTjH-bPVCpQTXOKl0Q93xTvuwOKD_Z6WoMBwKd5Q9VxVusGFNmCdnaDhmUsL_m_HaFrk-2wVtEbfur4oa90Z1auSRnFKKSNhwv6rPqmYQcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458223017</pqid></control><display><type>article</type><title>Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests</title><source>Free E- Journals</source><creator>She, Zhaowei ; Wang, Zilong ; Ayer, Turgay ; Toumi, Asmae ; Chhatwal, Jagpreet</creator><creatorcontrib>She, Zhaowei ; Wang, Zilong ; Ayer, Turgay ; Toumi, Asmae ; Chhatwal, Jagpreet</creatorcontrib><description>Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive algorithms ; Coronaviruses ; COVID-19 ; Disease control ; Epidemics ; Machine learning ; Outbreaks ; Viral diseases</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>She, Zhaowei</creatorcontrib><creatorcontrib>Wang, Zilong</creatorcontrib><creatorcontrib>Ayer, Turgay</creatorcontrib><creatorcontrib>Toumi, Asmae</creatorcontrib><creatorcontrib>Chhatwal, Jagpreet</creatorcontrib><title>Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests</title><title>arXiv.org</title><description>Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions.</description><subject>Adaptive algorithms</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease control</subject><subject>Epidemics</subject><subject>Machine learning</subject><subject>Outbreaks</subject><subject>Viral diseases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi98KgjAcRkcQJOU7DLoW5qZp16YVBEFUF93IwF81mZtts39Pn0EP0NUH55xvgDzKWBikEaUj5FtbE0LoLKFxzDx0yq0TDXdCXXCmO-VewQbuIHG2Pa4XQTjH-bPVCpQTXOKl0Q93xTvuwOKD_Z6WoMBwKd5Q9VxVusGFNmCdnaDhmUsL_m_HaFrk-2wVtEbfur4oa90Z1auSRnFKKSNhwv6rPqmYQcM</recordid><startdate>20201114</startdate><enddate>20201114</enddate><creator>She, Zhaowei</creator><creator>Wang, Zilong</creator><creator>Ayer, Turgay</creator><creator>Toumi, Asmae</creator><creator>Chhatwal, Jagpreet</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201114</creationdate><title>Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests</title><author>She, Zhaowei ; Wang, Zilong ; Ayer, Turgay ; Toumi, Asmae ; Chhatwal, Jagpreet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24582230173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive algorithms</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease control</topic><topic>Epidemics</topic><topic>Machine learning</topic><topic>Outbreaks</topic><topic>Viral diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>She, Zhaowei</creatorcontrib><creatorcontrib>Wang, Zilong</creatorcontrib><creatorcontrib>Ayer, Turgay</creatorcontrib><creatorcontrib>Toumi, Asmae</creatorcontrib><creatorcontrib>Chhatwal, Jagpreet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>She, Zhaowei</au><au>Wang, Zilong</au><au>Ayer, Turgay</au><au>Toumi, Asmae</au><au>Chhatwal, Jagpreet</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests</atitle><jtitle>arXiv.org</jtitle><date>2020-11-14</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2458223017
source Free E- Journals
subjects Adaptive algorithms
Coronaviruses
COVID-19
Disease control
Epidemics
Machine learning
Outbreaks
Viral diseases
title Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Estimating%20County-Level%20COVID-19%20Exponential%20Growth%20Rates%20Using%20Generalized%20Random%20Forests&rft.jtitle=arXiv.org&rft.au=She,%20Zhaowei&rft.date=2020-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2458223017%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458223017&rft_id=info:pmid/&rfr_iscdi=true