PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on audio, speech, and language processing speech, and language processing, 2020, Vol.28, p.2880-2894 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2894 |
---|---|
container_issue | |
container_start_page | 2880 |
container_title | IEEE/ACM transactions on audio, speech, and language processing |
container_volume | 28 |
creator | Kong, Qiuqiang Cao, Yin Iqbal, Turab Wang, Yuxuan Wang, Wenwu Plumbley, Mark D. |
description | Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle audio pattern recognition problems. However, previous systems are built on specific datasets with limited durations. Recently, in computer vision and natural language processing, systems pretrained on large-scale datasets have generalized well to several tasks. However, there is limited research on pretraining systems on large-scale datasets for audio pattern recognition. In this paper, we propose pretrained audio neural networks (PANNs) trained on the large-scale AudioSet dataset. These PANNs are transferred to other audio related tasks. We investigate the performance and computational complexity of PANNs modeled by a variety of convolutional neural networks. We propose an architecture called Wavegram-Logmel-CNN using both log-mel spectrogram and waveform as input feature. Our best PANN system achieves a state-of-the-art mean average precision (mAP) of 0.439 on AudioSet tagging, outperforming the best previous system of 0.392. We transfer PANNs to six audio pattern recognition tasks, and demonstrate state-of-the-art performance in several of those tasks. We have released the source code and pretrained models of PANNs: https://github.com/qiuqiangkong/audioset_tagging_cnn . |
doi_str_mv | 10.1109/TASLP.2020.3030497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2457976042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9229505</ieee_id><sourcerecordid>2457976042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-96801ecb9f58e76f9616a6e824223bd8e791b602a093380658db89b202a5e87d3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpD8AmEuuUsZ04GXZVxUuKSqBlbTnJpEopcbETIf6elBZW87p3RnMYu-Qw5RzwZjVbZvlUgICpBAkRJidsJKTAEIfq9C8XCOds4v0GADgkiEk0Yi_5bLHwt0Fm3JrCZWm2FOSOOmealqpg1leNDRbUO7MdQvdl3bsPauuOk9x0Hbk2eKXSrtuma2x7wc5qs_U0OcYxe7u_W80fw-z54Wk-y8IygrgLUaXAqSywjlNKVI2KK6MoFZEQsqiGHvJCgTCAUqag4rQqUiyGL01MaVLJMbs-7N05-9mT7_TG9q4dTmoRxQkmCiIxqMRBVTrrvaNa71zzYdy35qD39PQvPb2np4_0BtPVwdQQ0b8BhcAYYvkD2bFpVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457976042</pqid></control><display><type>article</type><title>PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Kong, Qiuqiang ; Cao, Yin ; Iqbal, Turab ; Wang, Yuxuan ; Wang, Wenwu ; Plumbley, Mark D.</creator><creatorcontrib>Kong, Qiuqiang ; Cao, Yin ; Iqbal, Turab ; Wang, Yuxuan ; Wang, Wenwu ; Plumbley, Mark D.</creatorcontrib><description>Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle audio pattern recognition problems. However, previous systems are built on specific datasets with limited durations. Recently, in computer vision and natural language processing, systems pretrained on large-scale datasets have generalized well to several tasks. However, there is limited research on pretraining systems on large-scale datasets for audio pattern recognition. In this paper, we propose pretrained audio neural networks (PANNs) trained on the large-scale AudioSet dataset. These PANNs are transferred to other audio related tasks. We investigate the performance and computational complexity of PANNs modeled by a variety of convolutional neural networks. We propose an architecture called Wavegram-Logmel-CNN using both log-mel spectrogram and waveform as input feature. Our best PANN system achieves a state-of-the-art mean average precision (mAP) of 0.439 on AudioSet tagging, outperforming the best previous system of 0.392. We transfer PANNs to six audio pattern recognition tasks, and demonstrate state-of-the-art performance in several of those tasks. We have released the source code and pretrained models of PANNs: https://github.com/qiuqiangkong/audioset_tagging_cnn .</description><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/TASLP.2020.3030497</identifier><identifier>CODEN: ITASFA</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acoustics ; Artificial neural networks ; Audio tagging ; Classification ; Computer vision ; Convolution ; Datasets ; Machine learning ; Marking ; Music ; Natural language processing ; Neural networks ; Pattern recognition ; pretrained audio neural networks ; Source code ; Tagging ; Task analysis ; Task complexity ; Training ; transfer learning ; Waveforms</subject><ispartof>IEEE/ACM transactions on audio, speech, and language processing, 2020, Vol.28, p.2880-2894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-96801ecb9f58e76f9616a6e824223bd8e791b602a093380658db89b202a5e87d3</citedby><cites>FETCH-LOGICAL-c405t-96801ecb9f58e76f9616a6e824223bd8e791b602a093380658db89b202a5e87d3</cites><orcidid>0000-0003-3393-2544 ; 0000-0002-8393-5703 ; 0000-0002-9708-1075 ; 0000-0003-2864-0475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9229505$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9229505$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Qiuqiang</creatorcontrib><creatorcontrib>Cao, Yin</creatorcontrib><creatorcontrib>Iqbal, Turab</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Wang, Wenwu</creatorcontrib><creatorcontrib>Plumbley, Mark D.</creatorcontrib><title>PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition</title><title>IEEE/ACM transactions on audio, speech, and language processing</title><addtitle>TASLP</addtitle><description>Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle audio pattern recognition problems. However, previous systems are built on specific datasets with limited durations. Recently, in computer vision and natural language processing, systems pretrained on large-scale datasets have generalized well to several tasks. However, there is limited research on pretraining systems on large-scale datasets for audio pattern recognition. In this paper, we propose pretrained audio neural networks (PANNs) trained on the large-scale AudioSet dataset. These PANNs are transferred to other audio related tasks. We investigate the performance and computational complexity of PANNs modeled by a variety of convolutional neural networks. We propose an architecture called Wavegram-Logmel-CNN using both log-mel spectrogram and waveform as input feature. Our best PANN system achieves a state-of-the-art mean average precision (mAP) of 0.439 on AudioSet tagging, outperforming the best previous system of 0.392. We transfer PANNs to six audio pattern recognition tasks, and demonstrate state-of-the-art performance in several of those tasks. We have released the source code and pretrained models of PANNs: https://github.com/qiuqiangkong/audioset_tagging_cnn .</description><subject>Acoustics</subject><subject>Artificial neural networks</subject><subject>Audio tagging</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Marking</subject><subject>Music</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>pretrained audio neural networks</subject><subject>Source code</subject><subject>Tagging</subject><subject>Task analysis</subject><subject>Task complexity</subject><subject>Training</subject><subject>transfer learning</subject><subject>Waveforms</subject><issn>2329-9290</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EElXpD8AmEuuUsZ04GXZVxUuKSqBlbTnJpEopcbETIf6elBZW87p3RnMYu-Qw5RzwZjVbZvlUgICpBAkRJidsJKTAEIfq9C8XCOds4v0GADgkiEk0Yi_5bLHwt0Fm3JrCZWm2FOSOOmealqpg1leNDRbUO7MdQvdl3bsPauuOk9x0Hbk2eKXSrtuma2x7wc5qs_U0OcYxe7u_W80fw-z54Wk-y8IygrgLUaXAqSywjlNKVI2KK6MoFZEQsqiGHvJCgTCAUqag4rQqUiyGL01MaVLJMbs-7N05-9mT7_TG9q4dTmoRxQkmCiIxqMRBVTrrvaNa71zzYdy35qD39PQvPb2np4_0BtPVwdQQ0b8BhcAYYvkD2bFpVA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Kong, Qiuqiang</creator><creator>Cao, Yin</creator><creator>Iqbal, Turab</creator><creator>Wang, Yuxuan</creator><creator>Wang, Wenwu</creator><creator>Plumbley, Mark D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3393-2544</orcidid><orcidid>https://orcid.org/0000-0002-8393-5703</orcidid><orcidid>https://orcid.org/0000-0002-9708-1075</orcidid><orcidid>https://orcid.org/0000-0003-2864-0475</orcidid></search><sort><creationdate>2020</creationdate><title>PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition</title><author>Kong, Qiuqiang ; Cao, Yin ; Iqbal, Turab ; Wang, Yuxuan ; Wang, Wenwu ; Plumbley, Mark D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-96801ecb9f58e76f9616a6e824223bd8e791b602a093380658db89b202a5e87d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Artificial neural networks</topic><topic>Audio tagging</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Marking</topic><topic>Music</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>pretrained audio neural networks</topic><topic>Source code</topic><topic>Tagging</topic><topic>Task analysis</topic><topic>Task complexity</topic><topic>Training</topic><topic>transfer learning</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Qiuqiang</creatorcontrib><creatorcontrib>Cao, Yin</creatorcontrib><creatorcontrib>Iqbal, Turab</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Wang, Wenwu</creatorcontrib><creatorcontrib>Plumbley, Mark D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Qiuqiang</au><au>Cao, Yin</au><au>Iqbal, Turab</au><au>Wang, Yuxuan</au><au>Wang, Wenwu</au><au>Plumbley, Mark D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition</atitle><jtitle>IEEE/ACM transactions on audio, speech, and language processing</jtitle><stitle>TASLP</stitle><date>2020</date><risdate>2020</risdate><volume>28</volume><spage>2880</spage><epage>2894</epage><pages>2880-2894</pages><issn>2329-9290</issn><eissn>2329-9304</eissn><coden>ITASFA</coden><abstract>Audio pattern recognition is an important research topic in the machine learning area, and includes several tasks such as audio tagging, acoustic scene classification, music classification, speech emotion classification and sound event detection. Recently, neural networks have been applied to tackle audio pattern recognition problems. However, previous systems are built on specific datasets with limited durations. Recently, in computer vision and natural language processing, systems pretrained on large-scale datasets have generalized well to several tasks. However, there is limited research on pretraining systems on large-scale datasets for audio pattern recognition. In this paper, we propose pretrained audio neural networks (PANNs) trained on the large-scale AudioSet dataset. These PANNs are transferred to other audio related tasks. We investigate the performance and computational complexity of PANNs modeled by a variety of convolutional neural networks. We propose an architecture called Wavegram-Logmel-CNN using both log-mel spectrogram and waveform as input feature. Our best PANN system achieves a state-of-the-art mean average precision (mAP) of 0.439 on AudioSet tagging, outperforming the best previous system of 0.392. We transfer PANNs to six audio pattern recognition tasks, and demonstrate state-of-the-art performance in several of those tasks. We have released the source code and pretrained models of PANNs: https://github.com/qiuqiangkong/audioset_tagging_cnn .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TASLP.2020.3030497</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3393-2544</orcidid><orcidid>https://orcid.org/0000-0002-8393-5703</orcidid><orcidid>https://orcid.org/0000-0002-9708-1075</orcidid><orcidid>https://orcid.org/0000-0003-2864-0475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2329-9290 |
ispartof | IEEE/ACM transactions on audio, speech, and language processing, 2020, Vol.28, p.2880-2894 |
issn | 2329-9290 2329-9304 |
language | eng |
recordid | cdi_proquest_journals_2457976042 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustics Artificial neural networks Audio tagging Classification Computer vision Convolution Datasets Machine learning Marking Music Natural language processing Neural networks Pattern recognition pretrained audio neural networks Source code Tagging Task analysis Task complexity Training transfer learning Waveforms |
title | PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PANNs:%20Large-Scale%20Pretrained%20Audio%20Neural%20Networks%20for%20Audio%20Pattern%20Recognition&rft.jtitle=IEEE/ACM%20transactions%20on%20audio,%20speech,%20and%20language%20processing&rft.au=Kong,%20Qiuqiang&rft.date=2020&rft.volume=28&rft.spage=2880&rft.epage=2894&rft.pages=2880-2894&rft.issn=2329-9290&rft.eissn=2329-9304&rft.coden=ITASFA&rft_id=info:doi/10.1109/TASLP.2020.3030497&rft_dat=%3Cproquest_RIE%3E2457976042%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457976042&rft_id=info:pmid/&rft_ieee_id=9229505&rfr_iscdi=true |