Predicting Kerr Soliton Combs in Microresonators via Deep Neural Networks

Formation of the Kerr soliton combs is a widely recognized important but complex issue, which relates to cross-influences among intra-cavity nonlinearities, chromatic dispersions, mode interactions, and pumping effects. Here, we propose and demonstrate a deep neural network model to predict Kerr com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2020-12, Vol.38 (23), p.6591-6599
Hauptverfasser: Tan, Teng, Peng, Cheng, Yuan, Zhongye, Xie, Xu, Liu, Hao, Xie, Zhenda, Huang, Shu-Wei, Rao, Yunjiang, Yao, Baicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6599
container_issue 23
container_start_page 6591
container_title Journal of lightwave technology
container_volume 38
creator Tan, Teng
Peng, Cheng
Yuan, Zhongye
Xie, Xu
Liu, Hao
Xie, Zhenda
Huang, Shu-Wei
Rao, Yunjiang
Yao, Baicheng
description Formation of the Kerr soliton combs is a widely recognized important but complex issue, which relates to cross-influences among intra-cavity nonlinearities, chromatic dispersions, mode interactions, and pumping effects. Here, we propose and demonstrate a deep neural network model to predict Kerr comb spectra in silica microspheres statistically, via training their transmission spectra. Such a scheme enables soliton comb identification under a particular pump scanning, with error
doi_str_mv 10.1109/JLT.2020.3015586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2457973647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165060</ieee_id><sourcerecordid>2457973647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-cc69386ae1d103622cb106e256ca4e4c69a1d35241ebda4ed2e60667bf138bc33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJxya7R6lf1foB1nPIZqeSWjc12Sr-96a0eHow897M40fIKYMRY1Bf3E9nIw4cRgJYWVZqjww2WnDOxD4ZgBaiqDSXh-QopQUAk7LSAzJ5idh61_vunT5gjPQ1LH0fOjoOn02ivqOP3sUQMYXO9iEm-u0tvUJc0SdcR7vM0v-E-JGOycHcLhOe7HRI3m6uZ-O7Yvp8OxlfTgvHa9YXzqlaVMoiaxkIxblrGCjkpXJWosxby1pRcsmwafOk5ahAKd3MmagaJ8SQnG_vrmL4WmPqzSKsY5dfGi5LXWuhpM4u2Lpy-ZQizs0q-k8bfw0DswFmMjCzAWZ2wHLkbBvxiPhvr5kqQYH4A-F_ZkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457973647</pqid></control><display><type>article</type><title>Predicting Kerr Soliton Combs in Microresonators via Deep Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Teng ; Peng, Cheng ; Yuan, Zhongye ; Xie, Xu ; Liu, Hao ; Xie, Zhenda ; Huang, Shu-Wei ; Rao, Yunjiang ; Yao, Baicheng</creator><creatorcontrib>Tan, Teng ; Peng, Cheng ; Yuan, Zhongye ; Xie, Xu ; Liu, Hao ; Xie, Zhenda ; Huang, Shu-Wei ; Rao, Yunjiang ; Yao, Baicheng</creatorcontrib><description>Formation of the Kerr soliton combs is a widely recognized important but complex issue, which relates to cross-influences among intra-cavity nonlinearities, chromatic dispersions, mode interactions, and pumping effects. Here, we propose and demonstrate a deep neural network model to predict Kerr comb spectra in silica microspheres statistically, via training their transmission spectra. Such a scheme enables soliton comb identification under a particular pump scanning, with error &lt;8%, verified by experimental measurements. This study bridging the deep learning and the microcomb photonics, may provide a powerful and convenient tool for photonic device test and investigation.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2020.3015586</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Deep neural networks ; Error analysis ; Kerr solitons ; Machine learning ; Microcavities ; microresonators ; Microspheres ; Neural networks ; Optical solitons ; Photonics ; Sensors ; Silicon dioxide ; Solitary waves ; Training</subject><ispartof>Journal of lightwave technology, 2020-12, Vol.38 (23), p.6591-6599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-cc69386ae1d103622cb106e256ca4e4c69a1d35241ebda4ed2e60667bf138bc33</citedby><cites>FETCH-LOGICAL-c291t-cc69386ae1d103622cb106e256ca4e4c69a1d35241ebda4ed2e60667bf138bc33</cites><orcidid>0000-0001-8368-5815 ; 0000-0003-0717-5586 ; 0000-0003-2177-1536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165060$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9165060$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tan, Teng</creatorcontrib><creatorcontrib>Peng, Cheng</creatorcontrib><creatorcontrib>Yuan, Zhongye</creatorcontrib><creatorcontrib>Xie, Xu</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xie, Zhenda</creatorcontrib><creatorcontrib>Huang, Shu-Wei</creatorcontrib><creatorcontrib>Rao, Yunjiang</creatorcontrib><creatorcontrib>Yao, Baicheng</creatorcontrib><title>Predicting Kerr Soliton Combs in Microresonators via Deep Neural Networks</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Formation of the Kerr soliton combs is a widely recognized important but complex issue, which relates to cross-influences among intra-cavity nonlinearities, chromatic dispersions, mode interactions, and pumping effects. Here, we propose and demonstrate a deep neural network model to predict Kerr comb spectra in silica microspheres statistically, via training their transmission spectra. Such a scheme enables soliton comb identification under a particular pump scanning, with error &lt;8%, verified by experimental measurements. This study bridging the deep learning and the microcomb photonics, may provide a powerful and convenient tool for photonic device test and investigation.</description><subject>Artificial neural networks</subject><subject>Deep neural networks</subject><subject>Error analysis</subject><subject>Kerr solitons</subject><subject>Machine learning</subject><subject>Microcavities</subject><subject>microresonators</subject><subject>Microspheres</subject><subject>Neural networks</subject><subject>Optical solitons</subject><subject>Photonics</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Solitary waves</subject><subject>Training</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJxya7R6lf1foB1nPIZqeSWjc12Sr-96a0eHow897M40fIKYMRY1Bf3E9nIw4cRgJYWVZqjww2WnDOxD4ZgBaiqDSXh-QopQUAk7LSAzJ5idh61_vunT5gjPQ1LH0fOjoOn02ivqOP3sUQMYXO9iEm-u0tvUJc0SdcR7vM0v-E-JGOycHcLhOe7HRI3m6uZ-O7Yvp8OxlfTgvHa9YXzqlaVMoiaxkIxblrGCjkpXJWosxby1pRcsmwafOk5ahAKd3MmagaJ8SQnG_vrmL4WmPqzSKsY5dfGi5LXWuhpM4u2Lpy-ZQizs0q-k8bfw0DswFmMjCzAWZ2wHLkbBvxiPhvr5kqQYH4A-F_ZkY</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Tan, Teng</creator><creator>Peng, Cheng</creator><creator>Yuan, Zhongye</creator><creator>Xie, Xu</creator><creator>Liu, Hao</creator><creator>Xie, Zhenda</creator><creator>Huang, Shu-Wei</creator><creator>Rao, Yunjiang</creator><creator>Yao, Baicheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8368-5815</orcidid><orcidid>https://orcid.org/0000-0003-0717-5586</orcidid><orcidid>https://orcid.org/0000-0003-2177-1536</orcidid></search><sort><creationdate>20201201</creationdate><title>Predicting Kerr Soliton Combs in Microresonators via Deep Neural Networks</title><author>Tan, Teng ; Peng, Cheng ; Yuan, Zhongye ; Xie, Xu ; Liu, Hao ; Xie, Zhenda ; Huang, Shu-Wei ; Rao, Yunjiang ; Yao, Baicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-cc69386ae1d103622cb106e256ca4e4c69a1d35241ebda4ed2e60667bf138bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Deep neural networks</topic><topic>Error analysis</topic><topic>Kerr solitons</topic><topic>Machine learning</topic><topic>Microcavities</topic><topic>microresonators</topic><topic>Microspheres</topic><topic>Neural networks</topic><topic>Optical solitons</topic><topic>Photonics</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Solitary waves</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Teng</creatorcontrib><creatorcontrib>Peng, Cheng</creatorcontrib><creatorcontrib>Yuan, Zhongye</creatorcontrib><creatorcontrib>Xie, Xu</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Xie, Zhenda</creatorcontrib><creatorcontrib>Huang, Shu-Wei</creatorcontrib><creatorcontrib>Rao, Yunjiang</creatorcontrib><creatorcontrib>Yao, Baicheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Teng</au><au>Peng, Cheng</au><au>Yuan, Zhongye</au><au>Xie, Xu</au><au>Liu, Hao</au><au>Xie, Zhenda</au><au>Huang, Shu-Wei</au><au>Rao, Yunjiang</au><au>Yao, Baicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Kerr Soliton Combs in Microresonators via Deep Neural Networks</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>38</volume><issue>23</issue><spage>6591</spage><epage>6599</epage><pages>6591-6599</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Formation of the Kerr soliton combs is a widely recognized important but complex issue, which relates to cross-influences among intra-cavity nonlinearities, chromatic dispersions, mode interactions, and pumping effects. Here, we propose and demonstrate a deep neural network model to predict Kerr comb spectra in silica microspheres statistically, via training their transmission spectra. Such a scheme enables soliton comb identification under a particular pump scanning, with error &lt;8%, verified by experimental measurements. This study bridging the deep learning and the microcomb photonics, may provide a powerful and convenient tool for photonic device test and investigation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2020.3015586</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8368-5815</orcidid><orcidid>https://orcid.org/0000-0003-0717-5586</orcidid><orcidid>https://orcid.org/0000-0003-2177-1536</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2020-12, Vol.38 (23), p.6591-6599
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2457973647
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Deep neural networks
Error analysis
Kerr solitons
Machine learning
Microcavities
microresonators
Microspheres
Neural networks
Optical solitons
Photonics
Sensors
Silicon dioxide
Solitary waves
Training
title Predicting Kerr Soliton Combs in Microresonators via Deep Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Kerr%20Soliton%20Combs%20in%20Microresonators%20via%20Deep%20Neural%20Networks&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Tan,%20Teng&rft.date=2020-12-01&rft.volume=38&rft.issue=23&rft.spage=6591&rft.epage=6599&rft.pages=6591-6599&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2020.3015586&rft_dat=%3Cproquest_RIE%3E2457973647%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457973647&rft_id=info:pmid/&rft_ieee_id=9165060&rfr_iscdi=true