Learning‐based parametrized model predictive control for trajectory tracking
Summary This article is concerned with the tracking of nonequilibrium motions with model predictive control (MPC). It proposes to parametrize input and state trajectories of a dynamic system with basis functions to alleviate the computational burden in MPC. As a result of the parametrization, an opt...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2020-11, Vol.41 (6), p.2225-2249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2249 |
---|---|
container_issue | 6 |
container_start_page | 2225 |
container_title | Optimal control applications & methods |
container_volume | 41 |
creator | Sferrazza, Carmelo Muehlebach, Michael D'Andrea, Raffaello |
description | Summary
This article is concerned with the tracking of nonequilibrium motions with model predictive control (MPC). It proposes to parametrize input and state trajectories of a dynamic system with basis functions to alleviate the computational burden in MPC. As a result of the parametrization, an optimization problem with fewer variables is obtained, and the memory requirements for storing the reference trajectories are reduced. The article also discusses the generation of feasible reference trajectories that account for the system's dynamics, as well as input and state constraints. In order to cope with repeatable disturbances, which may stem from unmodeled dynamics for example, an iterative learning procedure is included. The approach relies on a Kalman filter that identifies the repeatable disturbances based on previous trials. These are then included in the system's model available to the model predictive controller, which compensates them in subsequent trials. The proposed approach is evaluated on a quadcopter, whose task is to balance a pole, while flying a predefined trajectory. |
doi_str_mv | 10.1002/oca.2656 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457882003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457882003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3276-e04ad08ded44f8eebf508869a33d0cf25c665531472fb2652f41137d27b1cfbc3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmR2LBJGb_idFlVvKSKbmBtOfYYpaRxsFNQWfEJfCNfQkrZspo70tEdzSHknMKEArCrYM2EFbI4ICMK02lOJRWHZARU8JxBqY7JSUorAFCUsxF5WKCJbd0-f39-VSahyzoTzRr7WH8Myzo4bLIuoqttX79hZkPbx9BkPsSsj2aFtg9xu4v2ZWg5JUfeNAnP_uaYPN1cP87v8sXy9n4-W-SWM1XkCMI4KB06IXyJWHkJZVlMDecOrGfSFoWUnArFfDV8w7yglCvHVEWtrywfk4t9bxfD6wZTr1dhE9vhpGZCqrJkAHygLveUjSGliF53sV6buNUU9M6WHmzpna0Bzffoe93g9l9OL-ezX_4H2k1soQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457882003</pqid></control><display><type>article</type><title>Learning‐based parametrized model predictive control for trajectory tracking</title><source>Wiley Online Library (Online service)</source><creator>Sferrazza, Carmelo ; Muehlebach, Michael ; D'Andrea, Raffaello</creator><creatorcontrib>Sferrazza, Carmelo ; Muehlebach, Michael ; D'Andrea, Raffaello</creatorcontrib><description>Summary
This article is concerned with the tracking of nonequilibrium motions with model predictive control (MPC). It proposes to parametrize input and state trajectories of a dynamic system with basis functions to alleviate the computational burden in MPC. As a result of the parametrization, an optimization problem with fewer variables is obtained, and the memory requirements for storing the reference trajectories are reduced. The article also discusses the generation of feasible reference trajectories that account for the system's dynamics, as well as input and state constraints. In order to cope with repeatable disturbances, which may stem from unmodeled dynamics for example, an iterative learning procedure is included. The approach relies on a Kalman filter that identifies the repeatable disturbances based on previous trials. These are then included in the system's model available to the model predictive controller, which compensates them in subsequent trials. The proposed approach is evaluated on a quadcopter, whose task is to balance a pole, while flying a predefined trajectory.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2656</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Basis functions ; Disturbances ; iterative learning ; Iterative methods ; Kalman filters ; Learning ; model predictive control ; Optimization ; Parameterization ; Predictive control ; Tracking control ; Trajectory control ; trajectory generation ; trajectory tracking</subject><ispartof>Optimal control applications & methods, 2020-11, Vol.41 (6), p.2225-2249</ispartof><rights>2020 The Authors. published by John Wiley & Sons, Ltd.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3276-e04ad08ded44f8eebf508869a33d0cf25c665531472fb2652f41137d27b1cfbc3</citedby><cites>FETCH-LOGICAL-c3276-e04ad08ded44f8eebf508869a33d0cf25c665531472fb2652f41137d27b1cfbc3</cites><orcidid>0000-0002-7432-7634</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2656$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2656$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sferrazza, Carmelo</creatorcontrib><creatorcontrib>Muehlebach, Michael</creatorcontrib><creatorcontrib>D'Andrea, Raffaello</creatorcontrib><title>Learning‐based parametrized model predictive control for trajectory tracking</title><title>Optimal control applications & methods</title><description>Summary
This article is concerned with the tracking of nonequilibrium motions with model predictive control (MPC). It proposes to parametrize input and state trajectories of a dynamic system with basis functions to alleviate the computational burden in MPC. As a result of the parametrization, an optimization problem with fewer variables is obtained, and the memory requirements for storing the reference trajectories are reduced. The article also discusses the generation of feasible reference trajectories that account for the system's dynamics, as well as input and state constraints. In order to cope with repeatable disturbances, which may stem from unmodeled dynamics for example, an iterative learning procedure is included. The approach relies on a Kalman filter that identifies the repeatable disturbances based on previous trials. These are then included in the system's model available to the model predictive controller, which compensates them in subsequent trials. The proposed approach is evaluated on a quadcopter, whose task is to balance a pole, while flying a predefined trajectory.</description><subject>Basis functions</subject><subject>Disturbances</subject><subject>iterative learning</subject><subject>Iterative methods</subject><subject>Kalman filters</subject><subject>Learning</subject><subject>model predictive control</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Predictive control</subject><subject>Tracking control</subject><subject>Trajectory control</subject><subject>trajectory generation</subject><subject>trajectory tracking</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kMtOwzAQRS0EEqUg8QmR2LBJGb_idFlVvKSKbmBtOfYYpaRxsFNQWfEJfCNfQkrZspo70tEdzSHknMKEArCrYM2EFbI4ICMK02lOJRWHZARU8JxBqY7JSUorAFCUsxF5WKCJbd0-f39-VSahyzoTzRr7WH8Myzo4bLIuoqttX79hZkPbx9BkPsSsj2aFtg9xu4v2ZWg5JUfeNAnP_uaYPN1cP87v8sXy9n4-W-SWM1XkCMI4KB06IXyJWHkJZVlMDecOrGfSFoWUnArFfDV8w7yglCvHVEWtrywfk4t9bxfD6wZTr1dhE9vhpGZCqrJkAHygLveUjSGliF53sV6buNUU9M6WHmzpna0Bzffoe93g9l9OL-ezX_4H2k1soQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Sferrazza, Carmelo</creator><creator>Muehlebach, Michael</creator><creator>D'Andrea, Raffaello</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7432-7634</orcidid></search><sort><creationdate>202011</creationdate><title>Learning‐based parametrized model predictive control for trajectory tracking</title><author>Sferrazza, Carmelo ; Muehlebach, Michael ; D'Andrea, Raffaello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3276-e04ad08ded44f8eebf508869a33d0cf25c665531472fb2652f41137d27b1cfbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Basis functions</topic><topic>Disturbances</topic><topic>iterative learning</topic><topic>Iterative methods</topic><topic>Kalman filters</topic><topic>Learning</topic><topic>model predictive control</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Predictive control</topic><topic>Tracking control</topic><topic>Trajectory control</topic><topic>trajectory generation</topic><topic>trajectory tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sferrazza, Carmelo</creatorcontrib><creatorcontrib>Muehlebach, Michael</creatorcontrib><creatorcontrib>D'Andrea, Raffaello</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Open Access</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sferrazza, Carmelo</au><au>Muehlebach, Michael</au><au>D'Andrea, Raffaello</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning‐based parametrized model predictive control for trajectory tracking</atitle><jtitle>Optimal control applications & methods</jtitle><date>2020-11</date><risdate>2020</risdate><volume>41</volume><issue>6</issue><spage>2225</spage><epage>2249</epage><pages>2225-2249</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Summary
This article is concerned with the tracking of nonequilibrium motions with model predictive control (MPC). It proposes to parametrize input and state trajectories of a dynamic system with basis functions to alleviate the computational burden in MPC. As a result of the parametrization, an optimization problem with fewer variables is obtained, and the memory requirements for storing the reference trajectories are reduced. The article also discusses the generation of feasible reference trajectories that account for the system's dynamics, as well as input and state constraints. In order to cope with repeatable disturbances, which may stem from unmodeled dynamics for example, an iterative learning procedure is included. The approach relies on a Kalman filter that identifies the repeatable disturbances based on previous trials. These are then included in the system's model available to the model predictive controller, which compensates them in subsequent trials. The proposed approach is evaluated on a quadcopter, whose task is to balance a pole, while flying a predefined trajectory.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2656</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-7432-7634</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2020-11, Vol.41 (6), p.2225-2249 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_journals_2457882003 |
source | Wiley Online Library (Online service) |
subjects | Basis functions Disturbances iterative learning Iterative methods Kalman filters Learning model predictive control Optimization Parameterization Predictive control Tracking control Trajectory control trajectory generation trajectory tracking |
title | Learning‐based parametrized model predictive control for trajectory tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%E2%80%90based%20parametrized%20model%20predictive%20control%20for%20trajectory%20tracking&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Sferrazza,%20Carmelo&rft.date=2020-11&rft.volume=41&rft.issue=6&rft.spage=2225&rft.epage=2249&rft.pages=2225-2249&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2656&rft_dat=%3Cproquest_cross%3E2457882003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457882003&rft_id=info:pmid/&rfr_iscdi=true |