Integrity monitoring for Kalman filter-based localization

The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2020-11, Vol.39 (13), p.1503-1524
Hauptverfasser: Duenas Arana, Guillermo, Abdul Hafez, Osama, Joerger, Mathieu, Spenko, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1524
container_issue 13
container_start_page 1503
container_title The International journal of robotics research
container_volume 39
creator Duenas Arana, Guillermo
Abdul Hafez, Osama
Joerger, Mathieu
Spenko, Matthew
description The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.
doi_str_mv 10.1177/0278364920960517
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457545579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364920960517</sage_id><sourcerecordid>2457545579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3jwueo_l6k81RitpiwYuel3c32ZKy3dQkPdRfb0sFQfA0h3lmBoaQW87uOTfmgQlTS62sYFYz4OaMTLhRnEpu9DmZHG169C_JVc5rxpjUzE6IXYzFr1Io-2oTx1BiCuOq6mOqXnHY4Fj1YSg-0Razd9UQOxzCF5YQx2ty0eOQ_c2PTsnH89P7bE6Xby-L2eOSdpLZQrnijiNaW9faA2rbcSFE24MAbLWtAcF12oD03jnXgqsFU71hIEFY1YGckrtT7zbFz53PpVnHXRoPk41QYEABGHug2InqUsw5-b7ZprDBtG84a44HNX8POkToKZJx5X9L_-W_AXcsZB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457545579</pqid></control><display><type>article</type><title>Integrity monitoring for Kalman filter-based localization</title><source>SAGE Complete</source><creator>Duenas Arana, Guillermo ; Abdul Hafez, Osama ; Joerger, Mathieu ; Spenko, Matthew</creator><creatorcontrib>Duenas Arana, Guillermo ; Abdul Hafez, Osama ; Joerger, Mathieu ; Spenko, Matthew</creatorcontrib><description>The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364920960517</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Extended Kalman filter ; Fault detection ; Faults ; Global navigation satellite system ; Integrity ; Localization ; Monitoring ; Robotics ; Robots ; Safety ; Sensors ; Windows (intervals)</subject><ispartof>The International journal of robotics research, 2020-11, Vol.39 (13), p.1503-1524</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</citedby><cites>FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</cites><orcidid>0000-0003-3264-2828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364920960517$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364920960517$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Duenas Arana, Guillermo</creatorcontrib><creatorcontrib>Abdul Hafez, Osama</creatorcontrib><creatorcontrib>Joerger, Mathieu</creatorcontrib><creatorcontrib>Spenko, Matthew</creatorcontrib><title>Integrity monitoring for Kalman filter-based localization</title><title>The International journal of robotics research</title><description>The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.</description><subject>Extended Kalman filter</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Global navigation satellite system</subject><subject>Integrity</subject><subject>Localization</subject><subject>Monitoring</subject><subject>Robotics</subject><subject>Robots</subject><subject>Safety</subject><subject>Sensors</subject><subject>Windows (intervals)</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKt3jwueo_l6k81RitpiwYuel3c32ZKy3dQkPdRfb0sFQfA0h3lmBoaQW87uOTfmgQlTS62sYFYz4OaMTLhRnEpu9DmZHG169C_JVc5rxpjUzE6IXYzFr1Io-2oTx1BiCuOq6mOqXnHY4Fj1YSg-0Razd9UQOxzCF5YQx2ty0eOQ_c2PTsnH89P7bE6Xby-L2eOSdpLZQrnijiNaW9faA2rbcSFE24MAbLWtAcF12oD03jnXgqsFU71hIEFY1YGckrtT7zbFz53PpVnHXRoPk41QYEABGHug2InqUsw5-b7ZprDBtG84a44HNX8POkToKZJx5X9L_-W_AXcsZB0</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Duenas Arana, Guillermo</creator><creator>Abdul Hafez, Osama</creator><creator>Joerger, Mathieu</creator><creator>Spenko, Matthew</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3264-2828</orcidid></search><sort><creationdate>202011</creationdate><title>Integrity monitoring for Kalman filter-based localization</title><author>Duenas Arana, Guillermo ; Abdul Hafez, Osama ; Joerger, Mathieu ; Spenko, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Extended Kalman filter</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Global navigation satellite system</topic><topic>Integrity</topic><topic>Localization</topic><topic>Monitoring</topic><topic>Robotics</topic><topic>Robots</topic><topic>Safety</topic><topic>Sensors</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duenas Arana, Guillermo</creatorcontrib><creatorcontrib>Abdul Hafez, Osama</creatorcontrib><creatorcontrib>Joerger, Mathieu</creatorcontrib><creatorcontrib>Spenko, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duenas Arana, Guillermo</au><au>Abdul Hafez, Osama</au><au>Joerger, Mathieu</au><au>Spenko, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrity monitoring for Kalman filter-based localization</atitle><jtitle>The International journal of robotics research</jtitle><date>2020-11</date><risdate>2020</risdate><volume>39</volume><issue>13</issue><spage>1503</spage><epage>1524</epage><pages>1503-1524</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364920960517</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3264-2828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2020-11, Vol.39 (13), p.1503-1524
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_journals_2457545579
source SAGE Complete
subjects Extended Kalman filter
Fault detection
Faults
Global navigation satellite system
Integrity
Localization
Monitoring
Robotics
Robots
Safety
Sensors
Windows (intervals)
title Integrity monitoring for Kalman filter-based localization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrity%20monitoring%20for%20Kalman%20filter-based%20localization&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Duenas%20Arana,%20Guillermo&rft.date=2020-11&rft.volume=39&rft.issue=13&rft.spage=1503&rft.epage=1524&rft.pages=1503-1524&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364920960517&rft_dat=%3Cproquest_cross%3E2457545579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457545579&rft_id=info:pmid/&rft_sage_id=10.1177_0278364920960517&rfr_iscdi=true