Integrity monitoring for Kalman filter-based localization
The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response...
Gespeichert in:
Veröffentlicht in: | The International journal of robotics research 2020-11, Vol.39 (13), p.1503-1524 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1524 |
---|---|
container_issue | 13 |
container_start_page | 1503 |
container_title | The International journal of robotics research |
container_volume | 39 |
creator | Duenas Arana, Guillermo Abdul Hafez, Osama Joerger, Mathieu Spenko, Matthew |
description | The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process. |
doi_str_mv | 10.1177/0278364920960517 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457545579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364920960517</sage_id><sourcerecordid>2457545579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKt3jwueo_l6k81RitpiwYuel3c32ZKy3dQkPdRfb0sFQfA0h3lmBoaQW87uOTfmgQlTS62sYFYz4OaMTLhRnEpu9DmZHG169C_JVc5rxpjUzE6IXYzFr1Io-2oTx1BiCuOq6mOqXnHY4Fj1YSg-0Razd9UQOxzCF5YQx2ty0eOQ_c2PTsnH89P7bE6Xby-L2eOSdpLZQrnijiNaW9faA2rbcSFE24MAbLWtAcF12oD03jnXgqsFU71hIEFY1YGckrtT7zbFz53PpVnHXRoPk41QYEABGHug2InqUsw5-b7ZprDBtG84a44HNX8POkToKZJx5X9L_-W_AXcsZB0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457545579</pqid></control><display><type>article</type><title>Integrity monitoring for Kalman filter-based localization</title><source>SAGE Complete</source><creator>Duenas Arana, Guillermo ; Abdul Hafez, Osama ; Joerger, Mathieu ; Spenko, Matthew</creator><creatorcontrib>Duenas Arana, Guillermo ; Abdul Hafez, Osama ; Joerger, Mathieu ; Spenko, Matthew</creatorcontrib><description>The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364920960517</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Extended Kalman filter ; Fault detection ; Faults ; Global navigation satellite system ; Integrity ; Localization ; Monitoring ; Robotics ; Robots ; Safety ; Sensors ; Windows (intervals)</subject><ispartof>The International journal of robotics research, 2020-11, Vol.39 (13), p.1503-1524</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</citedby><cites>FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</cites><orcidid>0000-0003-3264-2828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364920960517$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364920960517$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Duenas Arana, Guillermo</creatorcontrib><creatorcontrib>Abdul Hafez, Osama</creatorcontrib><creatorcontrib>Joerger, Mathieu</creatorcontrib><creatorcontrib>Spenko, Matthew</creatorcontrib><title>Integrity monitoring for Kalman filter-based localization</title><title>The International journal of robotics research</title><description>The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.</description><subject>Extended Kalman filter</subject><subject>Fault detection</subject><subject>Faults</subject><subject>Global navigation satellite system</subject><subject>Integrity</subject><subject>Localization</subject><subject>Monitoring</subject><subject>Robotics</subject><subject>Robots</subject><subject>Safety</subject><subject>Sensors</subject><subject>Windows (intervals)</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKt3jwueo_l6k81RitpiwYuel3c32ZKy3dQkPdRfb0sFQfA0h3lmBoaQW87uOTfmgQlTS62sYFYz4OaMTLhRnEpu9DmZHG169C_JVc5rxpjUzE6IXYzFr1Io-2oTx1BiCuOq6mOqXnHY4Fj1YSg-0Razd9UQOxzCF5YQx2ty0eOQ_c2PTsnH89P7bE6Xby-L2eOSdpLZQrnijiNaW9faA2rbcSFE24MAbLWtAcF12oD03jnXgqsFU71hIEFY1YGckrtT7zbFz53PpVnHXRoPk41QYEABGHug2InqUsw5-b7ZprDBtG84a44HNX8POkToKZJx5X9L_-W_AXcsZB0</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Duenas Arana, Guillermo</creator><creator>Abdul Hafez, Osama</creator><creator>Joerger, Mathieu</creator><creator>Spenko, Matthew</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3264-2828</orcidid></search><sort><creationdate>202011</creationdate><title>Integrity monitoring for Kalman filter-based localization</title><author>Duenas Arana, Guillermo ; Abdul Hafez, Osama ; Joerger, Mathieu ; Spenko, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-141d1aa99886e5a69c1222bf525ab6985a5dc6753eedddb5d8204f70535294c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Extended Kalman filter</topic><topic>Fault detection</topic><topic>Faults</topic><topic>Global navigation satellite system</topic><topic>Integrity</topic><topic>Localization</topic><topic>Monitoring</topic><topic>Robotics</topic><topic>Robots</topic><topic>Safety</topic><topic>Sensors</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duenas Arana, Guillermo</creatorcontrib><creatorcontrib>Abdul Hafez, Osama</creatorcontrib><creatorcontrib>Joerger, Mathieu</creatorcontrib><creatorcontrib>Spenko, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duenas Arana, Guillermo</au><au>Abdul Hafez, Osama</au><au>Joerger, Mathieu</au><au>Spenko, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrity monitoring for Kalman filter-based localization</atitle><jtitle>The International journal of robotics research</jtitle><date>2020-11</date><risdate>2020</risdate><volume>39</volume><issue>13</issue><spage>1503</spage><epage>1524</epage><pages>1503-1524</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><abstract>The problem of quantifying robot localization safety in the presence of undetected sensor faults is critical when preparing for future applications where robots may interact with humans in life-critical situations; however, the topic is only sparsely addressed in the robotics literature. In response, this work leverages prior work in aviation integrity monitoring to tackle the more challenging case of evaluating localization safety in Global Navigation Satellite System (GNSS)-denied environments. Localization integrity risk is the probability that a robot’s pose estimate lies outside pre-defined acceptable limits while no alarm is triggered. In this article, the integrity risk (i.e., localization safety) is rigorously upper bounded by accounting for both nominal sensor noise and other non-nominal sensor faults. An extended Kalman filter is employed to estimate the robot state, and a sequence of innovations is used for fault detection. The novelty of the work includes (1) the use of a time window to limit the number of monitored fault hypotheses while still guaranteeing safety with respect to previously occurring faults and (2) a new method to account for faults in the data association process.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364920960517</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3264-2828</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-3649 |
ispartof | The International journal of robotics research, 2020-11, Vol.39 (13), p.1503-1524 |
issn | 0278-3649 1741-3176 |
language | eng |
recordid | cdi_proquest_journals_2457545579 |
source | SAGE Complete |
subjects | Extended Kalman filter Fault detection Faults Global navigation satellite system Integrity Localization Monitoring Robotics Robots Safety Sensors Windows (intervals) |
title | Integrity monitoring for Kalman filter-based localization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrity%20monitoring%20for%20Kalman%20filter-based%20localization&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Duenas%20Arana,%20Guillermo&rft.date=2020-11&rft.volume=39&rft.issue=13&rft.spage=1503&rft.epage=1524&rft.pages=1503-1524&rft.issn=0278-3649&rft.eissn=1741-3176&rft_id=info:doi/10.1177/0278364920960517&rft_dat=%3Cproquest_cross%3E2457545579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457545579&rft_id=info:pmid/&rft_sage_id=10.1177_0278364920960517&rfr_iscdi=true |