The role of surface properties in CO2 methanation over carbon-supported Ni catalysts and their promotion by Fe
The surface chemistry of the activated carbon supporting material was tailored to investigate the influence of O and N groups as well as O-free Lewis basic sites on the performance of Ni-based catalysts for CO2 methanation. Catalytic experiments demonstrated that 15% Ni on carbon with O-free Lewis b...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2020-01, Vol.10 (21), p.7217-7225 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The surface chemistry of the activated carbon supporting material was tailored to investigate the influence of O and N groups as well as O-free Lewis basic sites on the performance of Ni-based catalysts for CO2 methanation. Catalytic experiments demonstrated that 15% Ni on carbon with O-free Lewis basic sites showed the best performance (X-CO2 = 76%, S-CH4 = 97%, T = 450 degrees C, P = 1 bar), suggesting that the methanation reaction is highly dependent on the basicity of the support. Promotion with 5% Fe enabled the decrease of the optimal reaction temperature while improving the stability of the catalyst. Microstructural and compositional studies of the catalyst after a prolonged time on stream experiment suggested that the slight but gradual catalyst deactivation during methanation is associated with the sintering of Ni nanoparticles and the development of a distinct Ni@NiO core-shell nanostructure. |
---|---|
ISSN: | 2044-4753 2044-4761 |
DOI: | 10.1039/d0cy01254h |