Towards Automated Anamnesis Summarization: BERT-based Models for Symptom Extraction
Professionals in modern healthcare systems are increasingly burdened by documentation workloads. Documentation of the initial patient anamnesis is particularly relevant, forming the basis of successful further diagnostic measures. However, manually prepared notes are inherently unstructured and ofte...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Schäfer, Anton Blach, Nils Rausch, Oliver Warm, Maximilian Krüger, Nils |
description | Professionals in modern healthcare systems are increasingly burdened by documentation workloads. Documentation of the initial patient anamnesis is particularly relevant, forming the basis of successful further diagnostic measures. However, manually prepared notes are inherently unstructured and often incomplete. In this paper, we investigate the potential of modern NLP techniques to support doctors in this matter. We present a dataset of German patient monologues, and formulate a well-defined information extraction task under the constraints of real-world utility and practicality. In addition, we propose BERT-based models in order to solve said task. We can demonstrate promising performance of the models in both symptom identification and symptom attribute extraction, significantly outperforming simpler baselines. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2457442408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457442408</sourcerecordid><originalsourceid>FETCH-proquest_journals_24574424083</originalsourceid><addsrcrecordid>eNqNy08LgjAcxvERBEn5HgadhTVnSjcLo0uX9C6_coLiNttvoz-vPoNeQKfn8P08MxLwON5EmeB8QULEnjHGtylPkjggZWUeYBukuXdGgZMNzTUoLbFDWnqlwHZvcJ3RO7ovLlV0BZzM2TRyQNoaS8uXGqcrLZ7Owu0rV2TewoAy_O2SrI9FdThFozV3L9HVvfFWT6nmIkmF4IJl8X_qAzthQBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457442408</pqid></control><display><type>article</type><title>Towards Automated Anamnesis Summarization: BERT-based Models for Symptom Extraction</title><source>Free E- Journals</source><creator>Schäfer, Anton ; Blach, Nils ; Rausch, Oliver ; Warm, Maximilian ; Krüger, Nils</creator><creatorcontrib>Schäfer, Anton ; Blach, Nils ; Rausch, Oliver ; Warm, Maximilian ; Krüger, Nils</creatorcontrib><description>Professionals in modern healthcare systems are increasingly burdened by documentation workloads. Documentation of the initial patient anamnesis is particularly relevant, forming the basis of successful further diagnostic measures. However, manually prepared notes are inherently unstructured and often incomplete. In this paper, we investigate the potential of modern NLP techniques to support doctors in this matter. We present a dataset of German patient monologues, and formulate a well-defined information extraction task under the constraints of real-world utility and practicality. In addition, we propose BERT-based models in order to solve said task. We can demonstrate promising performance of the models in both symptom identification and symptom attribute extraction, significantly outperforming simpler baselines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diagnostic systems ; Documentation ; Information retrieval ; Physicians</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Schäfer, Anton</creatorcontrib><creatorcontrib>Blach, Nils</creatorcontrib><creatorcontrib>Rausch, Oliver</creatorcontrib><creatorcontrib>Warm, Maximilian</creatorcontrib><creatorcontrib>Krüger, Nils</creatorcontrib><title>Towards Automated Anamnesis Summarization: BERT-based Models for Symptom Extraction</title><title>arXiv.org</title><description>Professionals in modern healthcare systems are increasingly burdened by documentation workloads. Documentation of the initial patient anamnesis is particularly relevant, forming the basis of successful further diagnostic measures. However, manually prepared notes are inherently unstructured and often incomplete. In this paper, we investigate the potential of modern NLP techniques to support doctors in this matter. We present a dataset of German patient monologues, and formulate a well-defined information extraction task under the constraints of real-world utility and practicality. In addition, we propose BERT-based models in order to solve said task. We can demonstrate promising performance of the models in both symptom identification and symptom attribute extraction, significantly outperforming simpler baselines.</description><subject>Diagnostic systems</subject><subject>Documentation</subject><subject>Information retrieval</subject><subject>Physicians</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy08LgjAcxvERBEn5HgadhTVnSjcLo0uX9C6_coLiNttvoz-vPoNeQKfn8P08MxLwON5EmeB8QULEnjHGtylPkjggZWUeYBukuXdGgZMNzTUoLbFDWnqlwHZvcJ3RO7ovLlV0BZzM2TRyQNoaS8uXGqcrLZ7Owu0rV2TewoAy_O2SrI9FdThFozV3L9HVvfFWT6nmIkmF4IJl8X_qAzthQBo</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Schäfer, Anton</creator><creator>Blach, Nils</creator><creator>Rausch, Oliver</creator><creator>Warm, Maximilian</creator><creator>Krüger, Nils</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201103</creationdate><title>Towards Automated Anamnesis Summarization: BERT-based Models for Symptom Extraction</title><author>Schäfer, Anton ; Blach, Nils ; Rausch, Oliver ; Warm, Maximilian ; Krüger, Nils</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24574424083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Diagnostic systems</topic><topic>Documentation</topic><topic>Information retrieval</topic><topic>Physicians</topic><toplevel>online_resources</toplevel><creatorcontrib>Schäfer, Anton</creatorcontrib><creatorcontrib>Blach, Nils</creatorcontrib><creatorcontrib>Rausch, Oliver</creatorcontrib><creatorcontrib>Warm, Maximilian</creatorcontrib><creatorcontrib>Krüger, Nils</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schäfer, Anton</au><au>Blach, Nils</au><au>Rausch, Oliver</au><au>Warm, Maximilian</au><au>Krüger, Nils</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Automated Anamnesis Summarization: BERT-based Models for Symptom Extraction</atitle><jtitle>arXiv.org</jtitle><date>2020-11-03</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Professionals in modern healthcare systems are increasingly burdened by documentation workloads. Documentation of the initial patient anamnesis is particularly relevant, forming the basis of successful further diagnostic measures. However, manually prepared notes are inherently unstructured and often incomplete. In this paper, we investigate the potential of modern NLP techniques to support doctors in this matter. We present a dataset of German patient monologues, and formulate a well-defined information extraction task under the constraints of real-world utility and practicality. In addition, we propose BERT-based models in order to solve said task. We can demonstrate promising performance of the models in both symptom identification and symptom attribute extraction, significantly outperforming simpler baselines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2457442408 |
source | Free E- Journals |
subjects | Diagnostic systems Documentation Information retrieval Physicians |
title | Towards Automated Anamnesis Summarization: BERT-based Models for Symptom Extraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Automated%20Anamnesis%20Summarization:%20BERT-based%20Models%20for%20Symptom%20Extraction&rft.jtitle=arXiv.org&rft.au=Sch%C3%A4fer,%20Anton&rft.date=2020-11-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2457442408%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457442408&rft_id=info:pmid/&rfr_iscdi=true |