New reproducing kernel Hilbert spaces on semi‐infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation

We introduce new reproducing kernel Hilbert spaces on a semi‐infinite domain and demonstrate existence and uniqueness of solutions to the nonhomogeneous telegraph equation in these spaces if the driver is square‐integrable and sufficiently smooth.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-11, Vol.43 (17), p.9615-9636
Hauptverfasser: Hassan, Jabar S., Grow, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9636
container_issue 17
container_start_page 9615
container_title Mathematical methods in the applied sciences
container_volume 43
creator Hassan, Jabar S.
Grow, David
description We introduce new reproducing kernel Hilbert spaces on a semi‐infinite domain and demonstrate existence and uniqueness of solutions to the nonhomogeneous telegraph equation in these spaces if the driver is square‐integrable and sufficiently smooth.
doi_str_mv 10.1002/mma.6627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457402248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457402248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-d13aa00b2fc5dba534d0ed926f77f2cc3c00e85de0fac56fb9b7dff7c8d5051a3</originalsourceid><addsrcrecordid>eNp1kLtOJDEQRS3ESgzDSvsJlkhIGsruh6dDhFhA4pGwccttl2cM3fZguzWQ8Ql8I1-Ch9mUqII6OrfqEvKHwSkD4GfjKE-bhos9MmPQtgWrRLNPZsAEFBVn1QE5jPEJABaM8Rn5uMcNDbgOXk_KuiV9xuBwoNd26DEkGtdSYaTe0Yij_Xz_sM5YZxNS7UdpXaQbm1YUX21M6BRS6TSdnH2Z0GGMWR2nIUVqfKBphdR5t_KjX-atnyJNOOAyyHU2vEwyWe-OyC8jh4i__885-ff38vHiurh9uLq5OL8tFG9LUWhWSgnQc6Nq3cu6rDSgbnljhDBcqVIB4KLWCEaqujF92wttjFALXUPNZDknxztvfj0fG1P35KfgcmTHq1pUwHm1yNTJjlLBxxjQdOtgRxneOgbdtu8u991t-85osUM3dsC3H7nu7u78m_8CfoSHTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457402248</pqid></control><display><type>article</type><title>New reproducing kernel Hilbert spaces on semi‐infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation</title><source>Wiley-Blackwell Journals</source><creator>Hassan, Jabar S. ; Grow, David</creator><creatorcontrib>Hassan, Jabar S. ; Grow, David</creatorcontrib><description>We introduce new reproducing kernel Hilbert spaces on a semi‐infinite domain and demonstrate existence and uniqueness of solutions to the nonhomogeneous telegraph equation in these spaces if the driver is square‐integrable and sufficiently smooth.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6627</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Domains ; existence and uniqueness ; Hilbert space ; Kernels ; reproducing kernel Hilbert spaces ; telegraph equation ; Uniqueness</subject><ispartof>Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9615-9636</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-d13aa00b2fc5dba534d0ed926f77f2cc3c00e85de0fac56fb9b7dff7c8d5051a3</citedby><cites>FETCH-LOGICAL-c2937-d13aa00b2fc5dba534d0ed926f77f2cc3c00e85de0fac56fb9b7dff7c8d5051a3</cites><orcidid>0000-0002-9943-1286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Hassan, Jabar S.</creatorcontrib><creatorcontrib>Grow, David</creatorcontrib><title>New reproducing kernel Hilbert spaces on semi‐infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation</title><title>Mathematical methods in the applied sciences</title><description>We introduce new reproducing kernel Hilbert spaces on a semi‐infinite domain and demonstrate existence and uniqueness of solutions to the nonhomogeneous telegraph equation in these spaces if the driver is square‐integrable and sufficiently smooth.</description><subject>Domains</subject><subject>existence and uniqueness</subject><subject>Hilbert space</subject><subject>Kernels</subject><subject>reproducing kernel Hilbert spaces</subject><subject>telegraph equation</subject><subject>Uniqueness</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOJDEQRS3ESgzDSvsJlkhIGsruh6dDhFhA4pGwccttl2cM3fZguzWQ8Ql8I1-Ch9mUqII6OrfqEvKHwSkD4GfjKE-bhos9MmPQtgWrRLNPZsAEFBVn1QE5jPEJABaM8Rn5uMcNDbgOXk_KuiV9xuBwoNd26DEkGtdSYaTe0Yij_Xz_sM5YZxNS7UdpXaQbm1YUX21M6BRS6TSdnH2Z0GGMWR2nIUVqfKBphdR5t_KjX-atnyJNOOAyyHU2vEwyWe-OyC8jh4i__885-ff38vHiurh9uLq5OL8tFG9LUWhWSgnQc6Nq3cu6rDSgbnljhDBcqVIB4KLWCEaqujF92wttjFALXUPNZDknxztvfj0fG1P35KfgcmTHq1pUwHm1yNTJjlLBxxjQdOtgRxneOgbdtu8u991t-85osUM3dsC3H7nu7u78m_8CfoSHTw</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Hassan, Jabar S.</creator><creator>Grow, David</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9943-1286</orcidid></search><sort><creationdate>20201130</creationdate><title>New reproducing kernel Hilbert spaces on semi‐infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation</title><author>Hassan, Jabar S. ; Grow, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-d13aa00b2fc5dba534d0ed926f77f2cc3c00e85de0fac56fb9b7dff7c8d5051a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Domains</topic><topic>existence and uniqueness</topic><topic>Hilbert space</topic><topic>Kernels</topic><topic>reproducing kernel Hilbert spaces</topic><topic>telegraph equation</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Jabar S.</creatorcontrib><creatorcontrib>Grow, David</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Jabar S.</au><au>Grow, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New reproducing kernel Hilbert spaces on semi‐infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>43</volume><issue>17</issue><spage>9615</spage><epage>9636</epage><pages>9615-9636</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We introduce new reproducing kernel Hilbert spaces on a semi‐infinite domain and demonstrate existence and uniqueness of solutions to the nonhomogeneous telegraph equation in these spaces if the driver is square‐integrable and sufficiently smooth.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6627</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-9943-1286</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9615-9636
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2457402248
source Wiley-Blackwell Journals
subjects Domains
existence and uniqueness
Hilbert space
Kernels
reproducing kernel Hilbert spaces
telegraph equation
Uniqueness
title New reproducing kernel Hilbert spaces on semi‐infinite domains with existence and uniqueness results for the nonhomogeneous telegraph equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20reproducing%20kernel%20Hilbert%20spaces%20on%20semi%E2%80%90infinite%20domains%20with%20existence%20and%20uniqueness%20results%20for%20the%20nonhomogeneous%20telegraph%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hassan,%20Jabar%20S.&rft.date=2020-11-30&rft.volume=43&rft.issue=17&rft.spage=9615&rft.epage=9636&rft.pages=9615-9636&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6627&rft_dat=%3Cproquest_cross%3E2457402248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457402248&rft_id=info:pmid/&rfr_iscdi=true