The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay
This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-11, Vol.43 (17), p.9637-9653 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9653 |
---|---|
container_issue | 17 |
container_start_page | 9637 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Yang, Xin‐Guang Guo, Boling Guo, Chunxiao Li, Desheng |
description | This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved. |
doi_str_mv | 10.1002/mma.6634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457402167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457402167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeBw3iZdV-ZVaWFB2SJbj2GrapG5th6o77sANOQkuZctqFvO-b0YPoUsgAyCE3rStHGRZyo5QDwjnCbA8O0Y9AjlJGAV2is68XxBCCgDaQ--zucbGSRVkg6u61Stf2xW2Bq-7pimlWmIZwn5vncfGOhxigN7iZ_lRa_f9-fUa7FJ7rDedDDHq8bYOc1zpRu7O0YmRjdcXf7OP3u7vZuPHZPLy8DQeTRJFecoSDnmZgqmqoYJhVhoOjAOpFM1TYiTJuCGljN8qzjXhoBikrMxyWrBCmiJW9NHVoXft7KbTPoiF7dwqnhSUDXNGKGR5pK4PlHLWe6eNWLu6lW4ngIi9OxHdib27iCYHdFs3evcvJ6bT0S__A_qbb9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457402167</pqid></control><display><type>article</type><title>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Yang, Xin‐Guang ; Guo, Boling ; Guo, Chunxiao ; Li, Desheng</creator><creatorcontrib>Yang, Xin‐Guang ; Guo, Boling ; Guo, Chunxiao ; Li, Desheng</creatorcontrib><description>This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6634</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>2D Navier–Stokes equation ; Computational fluid dynamics ; continuous delay ; Fluid flow ; fractal dimension ; Fractal geometry ; Fractals ; Mathematical analysis ; Navier-Stokes equations ; pullback attractors</subject><ispartof>Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9637-9653</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</citedby><cites>FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</cites><orcidid>0000-0003-2890-1268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6634$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6634$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Xin‐Guang</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><creatorcontrib>Guo, Chunxiao</creatorcontrib><creatorcontrib>Li, Desheng</creatorcontrib><title>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</title><title>Mathematical methods in the applied sciences</title><description>This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.</description><subject>2D Navier–Stokes equation</subject><subject>Computational fluid dynamics</subject><subject>continuous delay</subject><subject>Fluid flow</subject><subject>fractal dimension</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>pullback attractors</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeBw3iZdV-ZVaWFB2SJbj2GrapG5th6o77sANOQkuZctqFvO-b0YPoUsgAyCE3rStHGRZyo5QDwjnCbA8O0Y9AjlJGAV2is68XxBCCgDaQ--zucbGSRVkg6u61Stf2xW2Bq-7pimlWmIZwn5vncfGOhxigN7iZ_lRa_f9-fUa7FJ7rDedDDHq8bYOc1zpRu7O0YmRjdcXf7OP3u7vZuPHZPLy8DQeTRJFecoSDnmZgqmqoYJhVhoOjAOpFM1TYiTJuCGljN8qzjXhoBikrMxyWrBCmiJW9NHVoXft7KbTPoiF7dwqnhSUDXNGKGR5pK4PlHLWe6eNWLu6lW4ngIi9OxHdib27iCYHdFs3evcvJ6bT0S__A_qbb9g</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Yang, Xin‐Guang</creator><creator>Guo, Boling</creator><creator>Guo, Chunxiao</creator><creator>Li, Desheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2890-1268</orcidid></search><sort><creationdate>20201130</creationdate><title>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</title><author>Yang, Xin‐Guang ; Guo, Boling ; Guo, Chunxiao ; Li, Desheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D Navier–Stokes equation</topic><topic>Computational fluid dynamics</topic><topic>continuous delay</topic><topic>Fluid flow</topic><topic>fractal dimension</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>pullback attractors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xin‐Guang</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><creatorcontrib>Guo, Chunxiao</creatorcontrib><creatorcontrib>Li, Desheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xin‐Guang</au><au>Guo, Boling</au><au>Guo, Chunxiao</au><au>Li, Desheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>43</volume><issue>17</issue><spage>9637</spage><epage>9653</epage><pages>9637-9653</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6634</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2890-1268</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9637-9653 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2457402167 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | 2D Navier–Stokes equation Computational fluid dynamics continuous delay Fluid flow fractal dimension Fractal geometry Fractals Mathematical analysis Navier-Stokes equations pullback attractors |
title | The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fractal%20dimension%20of%20pullback%20attractors%20for%20the%202D%20Navier%E2%80%93Stokes%20equations%20with%20delay&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yang,%20Xin%E2%80%90Guang&rft.date=2020-11-30&rft.volume=43&rft.issue=17&rft.spage=9637&rft.epage=9653&rft.pages=9637-9653&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6634&rft_dat=%3Cproquest_cross%3E2457402167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457402167&rft_id=info:pmid/&rfr_iscdi=true |