The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay

This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-11, Vol.43 (17), p.9637-9653
Hauptverfasser: Yang, Xin‐Guang, Guo, Boling, Guo, Chunxiao, Li, Desheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9653
container_issue 17
container_start_page 9637
container_title Mathematical methods in the applied sciences
container_volume 43
creator Yang, Xin‐Guang
Guo, Boling
Guo, Chunxiao
Li, Desheng
description This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.
doi_str_mv 10.1002/mma.6634
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457402167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457402167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeBw3iZdV-ZVaWFB2SJbj2GrapG5th6o77sANOQkuZctqFvO-b0YPoUsgAyCE3rStHGRZyo5QDwjnCbA8O0Y9AjlJGAV2is68XxBCCgDaQ--zucbGSRVkg6u61Stf2xW2Bq-7pimlWmIZwn5vncfGOhxigN7iZ_lRa_f9-fUa7FJ7rDedDDHq8bYOc1zpRu7O0YmRjdcXf7OP3u7vZuPHZPLy8DQeTRJFecoSDnmZgqmqoYJhVhoOjAOpFM1TYiTJuCGljN8qzjXhoBikrMxyWrBCmiJW9NHVoXft7KbTPoiF7dwqnhSUDXNGKGR5pK4PlHLWe6eNWLu6lW4ngIi9OxHdib27iCYHdFs3evcvJ6bT0S__A_qbb9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457402167</pqid></control><display><type>article</type><title>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Yang, Xin‐Guang ; Guo, Boling ; Guo, Chunxiao ; Li, Desheng</creator><creatorcontrib>Yang, Xin‐Guang ; Guo, Boling ; Guo, Chunxiao ; Li, Desheng</creatorcontrib><description>This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6634</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>2D Navier–Stokes equation ; Computational fluid dynamics ; continuous delay ; Fluid flow ; fractal dimension ; Fractal geometry ; Fractals ; Mathematical analysis ; Navier-Stokes equations ; pullback attractors</subject><ispartof>Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9637-9653</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</citedby><cites>FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</cites><orcidid>0000-0003-2890-1268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6634$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6634$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Xin‐Guang</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><creatorcontrib>Guo, Chunxiao</creatorcontrib><creatorcontrib>Li, Desheng</creatorcontrib><title>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</title><title>Mathematical methods in the applied sciences</title><description>This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.</description><subject>2D Navier–Stokes equation</subject><subject>Computational fluid dynamics</subject><subject>continuous delay</subject><subject>Fluid flow</subject><subject>fractal dimension</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Mathematical analysis</subject><subject>Navier-Stokes equations</subject><subject>pullback attractors</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeBw3iZdV-ZVaWFB2SJbj2GrapG5th6o77sANOQkuZctqFvO-b0YPoUsgAyCE3rStHGRZyo5QDwjnCbA8O0Y9AjlJGAV2is68XxBCCgDaQ--zucbGSRVkg6u61Stf2xW2Bq-7pimlWmIZwn5vncfGOhxigN7iZ_lRa_f9-fUa7FJ7rDedDDHq8bYOc1zpRu7O0YmRjdcXf7OP3u7vZuPHZPLy8DQeTRJFecoSDnmZgqmqoYJhVhoOjAOpFM1TYiTJuCGljN8qzjXhoBikrMxyWrBCmiJW9NHVoXft7KbTPoiF7dwqnhSUDXNGKGR5pK4PlHLWe6eNWLu6lW4ngIi9OxHdib27iCYHdFs3evcvJ6bT0S__A_qbb9g</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Yang, Xin‐Guang</creator><creator>Guo, Boling</creator><creator>Guo, Chunxiao</creator><creator>Li, Desheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2890-1268</orcidid></search><sort><creationdate>20201130</creationdate><title>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</title><author>Yang, Xin‐Guang ; Guo, Boling ; Guo, Chunxiao ; Li, Desheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-917b31fdd5c156bf914910dc2730fa069f0ba112c99e091c4134b672848af8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2D Navier–Stokes equation</topic><topic>Computational fluid dynamics</topic><topic>continuous delay</topic><topic>Fluid flow</topic><topic>fractal dimension</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Mathematical analysis</topic><topic>Navier-Stokes equations</topic><topic>pullback attractors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xin‐Guang</creatorcontrib><creatorcontrib>Guo, Boling</creatorcontrib><creatorcontrib>Guo, Chunxiao</creatorcontrib><creatorcontrib>Li, Desheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xin‐Guang</au><au>Guo, Boling</au><au>Guo, Chunxiao</au><au>Li, Desheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>43</volume><issue>17</issue><spage>9637</spage><epage>9653</epage><pages>9637-9653</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This paper is concerned with the bounded fractal and Hausdorff dimension of the pullback attractors for 2D nonautonomous incompressible Navier‐Stokes equations with constant delay terms. Using the construction of trace formula with two bases for phase spaces of product flow, the upper boundedness of fractal dimension has been achieved.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6634</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2890-1268</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9637-9653
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2457402167
source Wiley Online Library - AutoHoldings Journals
subjects 2D Navier–Stokes equation
Computational fluid dynamics
continuous delay
Fluid flow
fractal dimension
Fractal geometry
Fractals
Mathematical analysis
Navier-Stokes equations
pullback attractors
title The fractal dimension of pullback attractors for the 2D Navier–Stokes equations with delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fractal%20dimension%20of%20pullback%20attractors%20for%20the%202D%20Navier%E2%80%93Stokes%20equations%20with%20delay&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Yang,%20Xin%E2%80%90Guang&rft.date=2020-11-30&rft.volume=43&rft.issue=17&rft.spage=9637&rft.epage=9653&rft.pages=9637-9653&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6634&rft_dat=%3Cproquest_cross%3E2457402167%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457402167&rft_id=info:pmid/&rfr_iscdi=true