Mechanics of incompressible test bodies moving in Riemannian spaces

In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-11, Vol.43 (17), p.9790-9804
Hauptverfasser: Kovalchuk, Vasyl, Gołubowska, Barbara, Rożko, Ewa Eliza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9804
container_issue 17
container_start_page 9790
container_title Mathematical methods in the applied sciences
container_volume 43
creator Kovalchuk, Vasyl
Gołubowska, Barbara
Rożko, Ewa Eliza
description In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).
doi_str_mv 10.1002/mma.6651
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457402010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457402010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCtYH-BECXrxsnUmzr2MpvqBFED2HJJ3VlG6yJq3Sb29qvcocZg4_ZoY_Y1cIYwQQt32vx1VV4hEbIbRtgbKujtkIsIZCCpSn7CylFQA0iGLEZguyH9o7m3jouPM29EOklJxZE99Q2nATlo4S78OX8-9Z8BdHvfbeac_ToC2lC3bS6XWiy79-zt7u715nj8X8-eFpNp0XVrQTLJbWdKXUbUlYyVZKknVjuly61aVF09SNIGFriZXIz8lKIC2NsTpPErCcnLPrw94hhs9t_k2twjb6fFIJWdYSBCBkdXNQNoaUInVqiK7XcacQ1D4ilSNS-4gyLQ70261p969Ti8X01_8AfQhmoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457402010</pqid></control><display><type>article</type><title>Mechanics of incompressible test bodies moving in Riemannian spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kovalchuk, Vasyl ; Gołubowska, Barbara ; Rożko, Ewa Eliza</creator><creatorcontrib>Kovalchuk, Vasyl ; Gołubowska, Barbara ; Rożko, Ewa Eliza</creatorcontrib><description>In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6651</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Biomechanics ; Equations of motion ; geodesics ; geodetics ; gyroscopic motion ; incompressibility constraints ; Mathematical analysis ; mechanics of infinitesimal test bodies ; Object motion ; Riemannian spaces ; Tensors</subject><ispartof>Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9790-9804</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</citedby><cites>FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</cites><orcidid>0000-0001-5391-2706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kovalchuk, Vasyl</creatorcontrib><creatorcontrib>Gołubowska, Barbara</creatorcontrib><creatorcontrib>Rożko, Ewa Eliza</creatorcontrib><title>Mechanics of incompressible test bodies moving in Riemannian spaces</title><title>Mathematical methods in the applied sciences</title><description>In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).</description><subject>Biomechanics</subject><subject>Equations of motion</subject><subject>geodesics</subject><subject>geodetics</subject><subject>gyroscopic motion</subject><subject>incompressibility constraints</subject><subject>Mathematical analysis</subject><subject>mechanics of infinitesimal test bodies</subject><subject>Object motion</subject><subject>Riemannian spaces</subject><subject>Tensors</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCtYH-BECXrxsnUmzr2MpvqBFED2HJJ3VlG6yJq3Sb29qvcocZg4_ZoY_Y1cIYwQQt32vx1VV4hEbIbRtgbKujtkIsIZCCpSn7CylFQA0iGLEZguyH9o7m3jouPM29EOklJxZE99Q2nATlo4S78OX8-9Z8BdHvfbeac_ToC2lC3bS6XWiy79-zt7u715nj8X8-eFpNp0XVrQTLJbWdKXUbUlYyVZKknVjuly61aVF09SNIGFriZXIz8lKIC2NsTpPErCcnLPrw94hhs9t_k2twjb6fFIJWdYSBCBkdXNQNoaUInVqiK7XcacQ1D4ilSNS-4gyLQ70261p969Ti8X01_8AfQhmoQ</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Kovalchuk, Vasyl</creator><creator>Gołubowska, Barbara</creator><creator>Rożko, Ewa Eliza</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5391-2706</orcidid></search><sort><creationdate>20201130</creationdate><title>Mechanics of incompressible test bodies moving in Riemannian spaces</title><author>Kovalchuk, Vasyl ; Gołubowska, Barbara ; Rożko, Ewa Eliza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanics</topic><topic>Equations of motion</topic><topic>geodesics</topic><topic>geodetics</topic><topic>gyroscopic motion</topic><topic>incompressibility constraints</topic><topic>Mathematical analysis</topic><topic>mechanics of infinitesimal test bodies</topic><topic>Object motion</topic><topic>Riemannian spaces</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalchuk, Vasyl</creatorcontrib><creatorcontrib>Gołubowska, Barbara</creatorcontrib><creatorcontrib>Rożko, Ewa Eliza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalchuk, Vasyl</au><au>Gołubowska, Barbara</au><au>Rożko, Ewa Eliza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics of incompressible test bodies moving in Riemannian spaces</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>43</volume><issue>17</issue><spage>9790</spage><epage>9804</epage><pages>9790-9804</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6651</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5391-2706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9790-9804
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2457402010
source Wiley Online Library Journals Frontfile Complete
subjects Biomechanics
Equations of motion
geodesics
geodetics
gyroscopic motion
incompressibility constraints
Mathematical analysis
mechanics of infinitesimal test bodies
Object motion
Riemannian spaces
Tensors
title Mechanics of incompressible test bodies moving in Riemannian spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20of%20incompressible%20test%20bodies%20moving%20in%20Riemannian%20spaces&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kovalchuk,%20Vasyl&rft.date=2020-11-30&rft.volume=43&rft.issue=17&rft.spage=9790&rft.epage=9804&rft.pages=9790-9804&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6651&rft_dat=%3Cproquest_cross%3E2457402010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457402010&rft_id=info:pmid/&rfr_iscdi=true