Mechanics of incompressible test bodies moving in Riemannian spaces
In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion o...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-11, Vol.43 (17), p.9790-9804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9804 |
---|---|
container_issue | 17 |
container_start_page | 9790 |
container_title | Mathematical methods in the applied sciences |
container_volume | 43 |
creator | Kovalchuk, Vasyl Gołubowska, Barbara Rożko, Ewa Eliza |
description | In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes). |
doi_str_mv | 10.1002/mma.6651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2457402010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2457402010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</originalsourceid><addsrcrecordid>eNp10EtLAzEQB_AgCtYH-BECXrxsnUmzr2MpvqBFED2HJJ3VlG6yJq3Sb29qvcocZg4_ZoY_Y1cIYwQQt32vx1VV4hEbIbRtgbKujtkIsIZCCpSn7CylFQA0iGLEZguyH9o7m3jouPM29EOklJxZE99Q2nATlo4S78OX8-9Z8BdHvfbeac_ToC2lC3bS6XWiy79-zt7u715nj8X8-eFpNp0XVrQTLJbWdKXUbUlYyVZKknVjuly61aVF09SNIGFriZXIz8lKIC2NsTpPErCcnLPrw94hhs9t_k2twjb6fFIJWdYSBCBkdXNQNoaUInVqiK7XcacQ1D4ilSNS-4gyLQ70261p969Ti8X01_8AfQhmoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457402010</pqid></control><display><type>article</type><title>Mechanics of incompressible test bodies moving in Riemannian spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kovalchuk, Vasyl ; Gołubowska, Barbara ; Rożko, Ewa Eliza</creator><creatorcontrib>Kovalchuk, Vasyl ; Gołubowska, Barbara ; Rożko, Ewa Eliza</creatorcontrib><description>In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.6651</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Biomechanics ; Equations of motion ; geodesics ; geodetics ; gyroscopic motion ; incompressibility constraints ; Mathematical analysis ; mechanics of infinitesimal test bodies ; Object motion ; Riemannian spaces ; Tensors</subject><ispartof>Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9790-9804</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</citedby><cites>FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</cites><orcidid>0000-0001-5391-2706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.6651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.6651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kovalchuk, Vasyl</creatorcontrib><creatorcontrib>Gołubowska, Barbara</creatorcontrib><creatorcontrib>Rożko, Ewa Eliza</creatorcontrib><title>Mechanics of incompressible test bodies moving in Riemannian spaces</title><title>Mathematical methods in the applied sciences</title><description>In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).</description><subject>Biomechanics</subject><subject>Equations of motion</subject><subject>geodesics</subject><subject>geodetics</subject><subject>gyroscopic motion</subject><subject>incompressibility constraints</subject><subject>Mathematical analysis</subject><subject>mechanics of infinitesimal test bodies</subject><subject>Object motion</subject><subject>Riemannian spaces</subject><subject>Tensors</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEQB_AgCtYH-BECXrxsnUmzr2MpvqBFED2HJJ3VlG6yJq3Sb29qvcocZg4_ZoY_Y1cIYwQQt32vx1VV4hEbIbRtgbKujtkIsIZCCpSn7CylFQA0iGLEZguyH9o7m3jouPM29EOklJxZE99Q2nATlo4S78OX8-9Z8BdHvfbeac_ToC2lC3bS6XWiy79-zt7u715nj8X8-eFpNp0XVrQTLJbWdKXUbUlYyVZKknVjuly61aVF09SNIGFriZXIz8lKIC2NsTpPErCcnLPrw94hhs9t_k2twjb6fFIJWdYSBCBkdXNQNoaUInVqiK7XcacQ1D4ilSNS-4gyLQ70261p969Ti8X01_8AfQhmoQ</recordid><startdate>20201130</startdate><enddate>20201130</enddate><creator>Kovalchuk, Vasyl</creator><creator>Gołubowska, Barbara</creator><creator>Rożko, Ewa Eliza</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-5391-2706</orcidid></search><sort><creationdate>20201130</creationdate><title>Mechanics of incompressible test bodies moving in Riemannian spaces</title><author>Kovalchuk, Vasyl ; Gołubowska, Barbara ; Rożko, Ewa Eliza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-dcbf54a95e164944e478bfbfba9a5c1b8782e2c741628114621edbbca46240153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomechanics</topic><topic>Equations of motion</topic><topic>geodesics</topic><topic>geodetics</topic><topic>gyroscopic motion</topic><topic>incompressibility constraints</topic><topic>Mathematical analysis</topic><topic>mechanics of infinitesimal test bodies</topic><topic>Object motion</topic><topic>Riemannian spaces</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovalchuk, Vasyl</creatorcontrib><creatorcontrib>Gołubowska, Barbara</creatorcontrib><creatorcontrib>Rożko, Ewa Eliza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovalchuk, Vasyl</au><au>Gołubowska, Barbara</au><au>Rożko, Ewa Eliza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics of incompressible test bodies moving in Riemannian spaces</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2020-11-30</date><risdate>2020</risdate><volume>43</volume><issue>17</issue><spage>9790</spage><epage>9804</epage><pages>9790-9804</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In the present paper, we have discussed the mechanics of incompressible test bodies moving in Riemannian spaces with nontrivial curvature tensors. For Hamilton's equations of motion, the solutions have been obtained in the parametrical form and the special case of the purely gyroscopic motion on the sphere has been discussed. For the geodetic case when the potential is equal to zero, the comparison between the geodetic and geodesic solutions has been done and illustrated in details for the case of a particular choice of the constants of motion of the problem. The obtained results could be applied, among others, in geophysical problems, for example, for description of the movement of continental plates or the motion of a drop of fat or a spot of oil on the surface of the ocean (e.g., produced during some “ecological disaster”), or generally in biomechanical problems, for example, for description of the motion of objects with internal structure on different curved two‐dimensional surfaces (e.g., transport of proteins along the curved biological membranes).</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.6651</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5391-2706</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2020-11, Vol.43 (17), p.9790-9804 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2457402010 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biomechanics Equations of motion geodesics geodetics gyroscopic motion incompressibility constraints Mathematical analysis mechanics of infinitesimal test bodies Object motion Riemannian spaces Tensors |
title | Mechanics of incompressible test bodies moving in Riemannian spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20of%20incompressible%20test%20bodies%20moving%20in%20Riemannian%20spaces&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kovalchuk,%20Vasyl&rft.date=2020-11-30&rft.volume=43&rft.issue=17&rft.spage=9790&rft.epage=9804&rft.pages=9790-9804&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.6651&rft_dat=%3Cproquest_cross%3E2457402010%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457402010&rft_id=info:pmid/&rfr_iscdi=true |