Two-stage least squares as minimum distance

The two-stage least-squares (2SLS) instrumental-variables (IV) estimator for the parameters in linear models with a single endogenous variable is shown to be identical to an optimal minimum-distance (MD) estimator based on the individual instrument-specific IV estimators. The 2SLS estimator is a lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The econometrics journal 2019-01, Vol.22 (1), p.1-9
1. Verfasser: Windmeijer, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title The econometrics journal
container_volume 22
creator Windmeijer, Frank
description The two-stage least-squares (2SLS) instrumental-variables (IV) estimator for the parameters in linear models with a single endogenous variable is shown to be identical to an optimal minimum-distance (MD) estimator based on the individual instrument-specific IV estimators. The 2SLS estimator is a linear combination of the individual estimators, with the weights determined by their variances and covariances under conditional homoskedasticity. It is further shown that the Sargan test statistic for overidentifying restrictions is the same as the MD criterion test statistic. This provides an intuitive interpretation of the Sargan test. The equivalence results also apply to the efficient two-step generalized method of moments and robust optimal MD estimators and criterion functions, allowing for general forms of heteroskedasticity. It is further shown how these results extend to the linear overidentified IV model with multiple endogenous variables.
doi_str_mv 10.1111/ectj.12115
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2457309203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45172292</jstor_id><oup_id>10.1111/ectj.12115</oup_id><sourcerecordid>45172292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-b7541899307bdd4c44ec1b75b91cd0d7efea6d9e50eb6983d4d16365c9f8e4123</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rF39BQbwoXTP5aJujLH7BgpcVvIU2mUrLtukmLeK_t7td1JO5TBgeZpiXkEugCxjfHZq-XgADkEdkBjzJYsH4-_HPn8EpOQuhppSCADEjt-tPF4c-_8Bog3noo7Adco8hykPUVG3VDE1kqxG0Bs_JSZlvAl4c6py8PT6sl8_x6vXpZXm_io0E2cdFKgVkSnGaFtYKIwQaGJuFAmOpTbHEPLEKJcUiURm3wkLCE2lUmaEAxufkaprbebcdMPS6doNvx5WaCZlyqhjlo7qZlPEuBI-l7nzV5P5LA9W7MPQuDL0PY8TRhNG4tgq_NFE0U4nck-uJuKH7f9TB1aF3_q9k48VaSEgZU4x_A7q8ctQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2457309203</pqid></control><display><type>article</type><title>Two-stage least squares as minimum distance</title><source>Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Windmeijer, Frank</creator><creatorcontrib>Windmeijer, Frank</creatorcontrib><description>The two-stage least-squares (2SLS) instrumental-variables (IV) estimator for the parameters in linear models with a single endogenous variable is shown to be identical to an optimal minimum-distance (MD) estimator based on the individual instrument-specific IV estimators. The 2SLS estimator is a linear combination of the individual estimators, with the weights determined by their variances and covariances under conditional homoskedasticity. It is further shown that the Sargan test statistic for overidentifying restrictions is the same as the MD criterion test statistic. This provides an intuitive interpretation of the Sargan test. The equivalence results also apply to the efficient two-step generalized method of moments and robust optimal MD estimators and criterion functions, allowing for general forms of heteroskedasticity. It is further shown how these results extend to the linear overidentified IV model with multiple endogenous variables.</description><identifier>ISSN: 1368-4221</identifier><identifier>EISSN: 1368-423X</identifier><identifier>DOI: 10.1111/ectj.12115</identifier><language>eng</language><publisher>Oxford: Royal Economic Society and Oxford University Press</publisher><subject>Endogenous ; Generalized method of moments ; Linear analysis</subject><ispartof>The econometrics journal, 2019-01, Vol.22 (1), p.1-9</ispartof><rights>Copyright © 2019 Royal Economic Society</rights><rights>Royal Economic Society. Published by Oxford University Press on behalf of Royal Economic Society. 2019</rights><rights>Royal Economic Society. Published by Oxford University Press on behalf of Royal Economic Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-b7541899307bdd4c44ec1b75b91cd0d7efea6d9e50eb6983d4d16365c9f8e4123</citedby><cites>FETCH-LOGICAL-c515t-b7541899307bdd4c44ec1b75b91cd0d7efea6d9e50eb6983d4d16365c9f8e4123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Windmeijer, Frank</creatorcontrib><title>Two-stage least squares as minimum distance</title><title>The econometrics journal</title><description>The two-stage least-squares (2SLS) instrumental-variables (IV) estimator for the parameters in linear models with a single endogenous variable is shown to be identical to an optimal minimum-distance (MD) estimator based on the individual instrument-specific IV estimators. The 2SLS estimator is a linear combination of the individual estimators, with the weights determined by their variances and covariances under conditional homoskedasticity. It is further shown that the Sargan test statistic for overidentifying restrictions is the same as the MD criterion test statistic. This provides an intuitive interpretation of the Sargan test. The equivalence results also apply to the efficient two-step generalized method of moments and robust optimal MD estimators and criterion functions, allowing for general forms of heteroskedasticity. It is further shown how these results extend to the linear overidentified IV model with multiple endogenous variables.</description><subject>Endogenous</subject><subject>Generalized method of moments</subject><subject>Linear analysis</subject><issn>1368-4221</issn><issn>1368-423X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNp90E1LxDAQBuAgCq6rF39BQbwoXTP5aJujLH7BgpcVvIU2mUrLtukmLeK_t7td1JO5TBgeZpiXkEugCxjfHZq-XgADkEdkBjzJYsH4-_HPn8EpOQuhppSCADEjt-tPF4c-_8Bog3noo7Adco8hykPUVG3VDE1kqxG0Bs_JSZlvAl4c6py8PT6sl8_x6vXpZXm_io0E2cdFKgVkSnGaFtYKIwQaGJuFAmOpTbHEPLEKJcUiURm3wkLCE2lUmaEAxufkaprbebcdMPS6doNvx5WaCZlyqhjlo7qZlPEuBI-l7nzV5P5LA9W7MPQuDL0PY8TRhNG4tgq_NFE0U4nck-uJuKH7f9TB1aF3_q9k48VaSEgZU4x_A7q8ctQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Windmeijer, Frank</creator><general>Royal Economic Society and Oxford University Press</general><general>Oxford University Press</general><scope>TOX</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190101</creationdate><title>Two-stage least squares as minimum distance</title><author>Windmeijer, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-b7541899307bdd4c44ec1b75b91cd0d7efea6d9e50eb6983d4d16365c9f8e4123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Endogenous</topic><topic>Generalized method of moments</topic><topic>Linear analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Windmeijer, Frank</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The econometrics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Windmeijer, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-stage least squares as minimum distance</atitle><jtitle>The econometrics journal</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1368-4221</issn><eissn>1368-423X</eissn><abstract>The two-stage least-squares (2SLS) instrumental-variables (IV) estimator for the parameters in linear models with a single endogenous variable is shown to be identical to an optimal minimum-distance (MD) estimator based on the individual instrument-specific IV estimators. The 2SLS estimator is a linear combination of the individual estimators, with the weights determined by their variances and covariances under conditional homoskedasticity. It is further shown that the Sargan test statistic for overidentifying restrictions is the same as the MD criterion test statistic. This provides an intuitive interpretation of the Sargan test. The equivalence results also apply to the efficient two-step generalized method of moments and robust optimal MD estimators and criterion functions, allowing for general forms of heteroskedasticity. It is further shown how these results extend to the linear overidentified IV model with multiple endogenous variables.</abstract><cop>Oxford</cop><pub>Royal Economic Society and Oxford University Press</pub><doi>10.1111/ectj.12115</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1368-4221
ispartof The econometrics journal, 2019-01, Vol.22 (1), p.1-9
issn 1368-4221
1368-423X
language eng
recordid cdi_proquest_journals_2457309203
source Business Source Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Endogenous
Generalized method of moments
Linear analysis
title Two-stage least squares as minimum distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A08%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-stage%20least%20squares%20as%20minimum%20distance&rft.jtitle=The%20econometrics%20journal&rft.au=Windmeijer,%20Frank&rft.date=2019-01-01&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1368-4221&rft.eissn=1368-423X&rft_id=info:doi/10.1111/ectj.12115&rft_dat=%3Cjstor_proqu%3E45172292%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2457309203&rft_id=info:pmid/&rft_jstor_id=45172292&rft_oup_id=10.1111/ectj.12115&rfr_iscdi=true