Hinge solitons in three-dimensional second-order topological insulators

Higher-order topological insulators have recently witnessed rapid progress in various fields ranging from condensed matter physics to electric circuits. A well-known higher-order state is the second-order topological insulator in three dimensions with gapless states localized on the hinges. A natura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2020-10, Vol.22 (10), p.103058
Hauptverfasser: Tao, Yu-Liang, Dai, Ning, Yang, Yan-Bin, Zeng, Qi-Bo, Xu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 103058
container_title New journal of physics
container_volume 22
creator Tao, Yu-Liang
Dai, Ning
Yang, Yan-Bin
Zeng, Qi-Bo
Xu, Yong
description Higher-order topological insulators have recently witnessed rapid progress in various fields ranging from condensed matter physics to electric circuits. A well-known higher-order state is the second-order topological insulator in three dimensions with gapless states localized on the hinges. A natural question in the context of nonlinearity is whether solitons can exist on the hinges in a second-order topological insulator. Here we theoretically demonstrate the existence of stable solitons localized on the hinges of a second-order topological insulator in three dimensions when nonlinearity is involved. By means of systematic numerical study, we find that the soliton has strong localization in real space and propagates along the hinge unidirectionally without changing its shape. We further construct an electric network to simulate the second-order topological insulator. When a nonlinear inductor is appropriately involved, we find that the system can support a bright soliton for the voltage distribution demonstrated by stable time evolution of a voltage pulse.
doi_str_mv 10.1088/1367-2630/abc1f9
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2456888696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4701956ccacd4655a8d4d891196e8428</doaj_id><sourcerecordid>2456888696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-c934597613dddb7113cfb047dfcb7619a1a7f947d8510b1831333a9e5adc0a093</originalsourceid><addsrcrecordid>eNp9ULFOwzAQtRBIlMLOGImFgVBfHDv2iCpoK1VigdlybKe4Su1gpwN_T0pQYUBMd_fuvXe6h9A14HvAnM-AsCovGMEzVWtoxAmaHKHTX_05ukhpizEAL4oJWiyd39gshdb1wafM-ax_i9bmxu2sTy541WbJ6uBNHqKxMetDF9qwcXpYOJ_2repDTJforFFtslffdYpenx5f5st8_bxYzR_WuaZA-1wLUlJRMSDGmLoCILqpcVmZRtcDKhSoqhHDzCngGjgBQogSliqjscKCTNFq9DVBbWUX3U7FDxmUk19AiBupYu90a2VZYRCUaa20KRmlipvScAEgmOVlwQevm9Gri-F9b1Mvt2Efh4eTLErKOOdMsIGFR5aOIaVom-NVwPIQvTxkKw_ZyjH6QXI3Slzofjz_od_-QffbThbFqCKYctmZhnwClu-R3w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456888696</pqid></control><display><type>article</type><title>Hinge solitons in three-dimensional second-order topological insulators</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Tao, Yu-Liang ; Dai, Ning ; Yang, Yan-Bin ; Zeng, Qi-Bo ; Xu, Yong</creator><creatorcontrib>Tao, Yu-Liang ; Dai, Ning ; Yang, Yan-Bin ; Zeng, Qi-Bo ; Xu, Yong</creatorcontrib><description>Higher-order topological insulators have recently witnessed rapid progress in various fields ranging from condensed matter physics to electric circuits. A well-known higher-order state is the second-order topological insulator in three dimensions with gapless states localized on the hinges. A natural question in the context of nonlinearity is whether solitons can exist on the hinges in a second-order topological insulator. Here we theoretically demonstrate the existence of stable solitons localized on the hinges of a second-order topological insulator in three dimensions when nonlinearity is involved. By means of systematic numerical study, we find that the soliton has strong localization in real space and propagates along the hinge unidirectionally without changing its shape. We further construct an electric network to simulate the second-order topological insulator. When a nonlinear inductor is appropriately involved, we find that the system can support a bright soliton for the voltage distribution demonstrated by stable time evolution of a voltage pulse.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/abc1f9</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Circuits ; Condensed matter physics ; electric circuits ; Electric potential ; Electrical networks ; Energy ; higher-order topological insulators ; Nonlinearity ; Physics ; Solitary waves ; solitons ; Symmetry ; Topological insulators ; Voltage</subject><ispartof>New journal of physics, 2020-10, Vol.22 (10), p.103058</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-c934597613dddb7113cfb047dfcb7619a1a7f947d8510b1831333a9e5adc0a093</citedby><cites>FETCH-LOGICAL-c515t-c934597613dddb7113cfb047dfcb7619a1a7f947d8510b1831333a9e5adc0a093</cites><orcidid>0000-0003-4946-6664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/abc1f9/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Tao, Yu-Liang</creatorcontrib><creatorcontrib>Dai, Ning</creatorcontrib><creatorcontrib>Yang, Yan-Bin</creatorcontrib><creatorcontrib>Zeng, Qi-Bo</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><title>Hinge solitons in three-dimensional second-order topological insulators</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Higher-order topological insulators have recently witnessed rapid progress in various fields ranging from condensed matter physics to electric circuits. A well-known higher-order state is the second-order topological insulator in three dimensions with gapless states localized on the hinges. A natural question in the context of nonlinearity is whether solitons can exist on the hinges in a second-order topological insulator. Here we theoretically demonstrate the existence of stable solitons localized on the hinges of a second-order topological insulator in three dimensions when nonlinearity is involved. By means of systematic numerical study, we find that the soliton has strong localization in real space and propagates along the hinge unidirectionally without changing its shape. We further construct an electric network to simulate the second-order topological insulator. When a nonlinear inductor is appropriately involved, we find that the system can support a bright soliton for the voltage distribution demonstrated by stable time evolution of a voltage pulse.</description><subject>Circuits</subject><subject>Condensed matter physics</subject><subject>electric circuits</subject><subject>Electric potential</subject><subject>Electrical networks</subject><subject>Energy</subject><subject>higher-order topological insulators</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Solitary waves</subject><subject>solitons</subject><subject>Symmetry</subject><subject>Topological insulators</subject><subject>Voltage</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9ULFOwzAQtRBIlMLOGImFgVBfHDv2iCpoK1VigdlybKe4Su1gpwN_T0pQYUBMd_fuvXe6h9A14HvAnM-AsCovGMEzVWtoxAmaHKHTX_05ukhpizEAL4oJWiyd39gshdb1wafM-ax_i9bmxu2sTy541WbJ6uBNHqKxMetDF9qwcXpYOJ_2repDTJforFFtslffdYpenx5f5st8_bxYzR_WuaZA-1wLUlJRMSDGmLoCILqpcVmZRtcDKhSoqhHDzCngGjgBQogSliqjscKCTNFq9DVBbWUX3U7FDxmUk19AiBupYu90a2VZYRCUaa20KRmlipvScAEgmOVlwQevm9Gri-F9b1Mvt2Efh4eTLErKOOdMsIGFR5aOIaVom-NVwPIQvTxkKw_ZyjH6QXI3Slzofjz_od_-QffbThbFqCKYctmZhnwClu-R3w</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Tao, Yu-Liang</creator><creator>Dai, Ning</creator><creator>Yang, Yan-Bin</creator><creator>Zeng, Qi-Bo</creator><creator>Xu, Yong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4946-6664</orcidid></search><sort><creationdate>20201001</creationdate><title>Hinge solitons in three-dimensional second-order topological insulators</title><author>Tao, Yu-Liang ; Dai, Ning ; Yang, Yan-Bin ; Zeng, Qi-Bo ; Xu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-c934597613dddb7113cfb047dfcb7619a1a7f947d8510b1831333a9e5adc0a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Circuits</topic><topic>Condensed matter physics</topic><topic>electric circuits</topic><topic>Electric potential</topic><topic>Electrical networks</topic><topic>Energy</topic><topic>higher-order topological insulators</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Solitary waves</topic><topic>solitons</topic><topic>Symmetry</topic><topic>Topological insulators</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Yu-Liang</creatorcontrib><creatorcontrib>Dai, Ning</creatorcontrib><creatorcontrib>Yang, Yan-Bin</creatorcontrib><creatorcontrib>Zeng, Qi-Bo</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Yu-Liang</au><au>Dai, Ning</au><au>Yang, Yan-Bin</au><au>Zeng, Qi-Bo</au><au>Xu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hinge solitons in three-dimensional second-order topological insulators</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>22</volume><issue>10</issue><spage>103058</spage><pages>103058-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Higher-order topological insulators have recently witnessed rapid progress in various fields ranging from condensed matter physics to electric circuits. A well-known higher-order state is the second-order topological insulator in three dimensions with gapless states localized on the hinges. A natural question in the context of nonlinearity is whether solitons can exist on the hinges in a second-order topological insulator. Here we theoretically demonstrate the existence of stable solitons localized on the hinges of a second-order topological insulator in three dimensions when nonlinearity is involved. By means of systematic numerical study, we find that the soliton has strong localization in real space and propagates along the hinge unidirectionally without changing its shape. We further construct an electric network to simulate the second-order topological insulator. When a nonlinear inductor is appropriately involved, we find that the system can support a bright soliton for the voltage distribution demonstrated by stable time evolution of a voltage pulse.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/abc1f9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4946-6664</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2020-10, Vol.22 (10), p.103058
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2456888696
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Circuits
Condensed matter physics
electric circuits
Electric potential
Electrical networks
Energy
higher-order topological insulators
Nonlinearity
Physics
Solitary waves
solitons
Symmetry
Topological insulators
Voltage
title Hinge solitons in three-dimensional second-order topological insulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T09%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hinge%20solitons%20in%20three-dimensional%20second-order%20topological%20insulators&rft.jtitle=New%20journal%20of%20physics&rft.au=Tao,%20Yu-Liang&rft.date=2020-10-01&rft.volume=22&rft.issue=10&rft.spage=103058&rft.pages=103058-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/abc1f9&rft_dat=%3Cproquest_iop_j%3E2456888696%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456888696&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4701956ccacd4655a8d4d891196e8428&rfr_iscdi=true